Gotowa bibliografia na temat „Imaging in a neural tissue”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Imaging in a neural tissue”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Imaging in a neural tissue"
KUHAR, M. "Imaging receptors for drugs in neural tissue". Neuropharmacology 26, nr 7 (lipiec 1987): 911–16. http://dx.doi.org/10.1016/0028-3908(87)90069-4.
Pełny tekst źródłaYadav, Rajiv, Sushmita Mukherjee, Frederick R. Maxfield, Jay K. Jhaveri, Sandhya Rao, Robert A. Leung, E. Darracott Vaughan, Watt W. Webb i Ashutosh K. Tewari. "IMAGING OF PERIPROSTATIC NEURAL TISSUE WITH MULTIPHOTON MICROSCOPY". Journal of Urology 179, nr 4S (kwiecień 2008): 275–76. http://dx.doi.org/10.1016/s0022-5347(08)60801-0.
Pełny tekst źródłaWu, Ed X., i Matthew M. Cheung. "MR diffusion kurtosis imaging for neural tissue characterization". NMR in Biomedicine 23, nr 7 (9.07.2010): 836–48. http://dx.doi.org/10.1002/nbm.1506.
Pełny tekst źródłaNiesner, Raluca, Volker Siffrin i Frauke Zipp. "Two-Photon Imaging of Immune Cells in Neural Tissue". Cold Spring Harbor Protocols 2013, nr 3 (marzec 2013): pdb.prot073528. http://dx.doi.org/10.1101/pdb.prot073528.
Pełny tekst źródłaXuan, Jianhua, Uwe Klimach, Hongzhi Zhao, Qiushui Chen, Yingyin Zou i Yue Wang. "Improved Diagnostics Using Polarization Imaging and Artificial Neural Networks". International Journal of Biomedical Imaging 2007 (2007): 1–11. http://dx.doi.org/10.1155/2007/74143.
Pełny tekst źródłaJing, D., Y. Yi, W. Luo, S. Zhang, Q. Yuan, J. Wang, E. Lachika, Z. Zhao i H. Zhao. "Tissue Clearing and Its Application to Bone and Dental Tissues". Journal of Dental Research 98, nr 6 (22.04.2019): 621–31. http://dx.doi.org/10.1177/0022034519844510.
Pełny tekst źródłaRoth, Bradley J., i Peter J. Basser. "Mechanical model of neural tissue displacement during Lorentz effect imaging". Magnetic Resonance in Medicine 61, nr 1 (18.12.2008): 59–64. http://dx.doi.org/10.1002/mrm.21772.
Pełny tekst źródłaKlontzas, Michail E., i Alexandros Protonotarios. "High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review". Bioengineering 8, nr 11 (10.11.2021): 182. http://dx.doi.org/10.3390/bioengineering8110182.
Pełny tekst źródłaZhang, Lechao, Yao Zhou, Danfei Huang, Libin Zhu, Xiaoqing Chen, Zhonghao Xie, Guihua Cui, Guangzao Huang, Shujat Ali i Xiaojing Chen. "Hyperspectral Imaging Combined with Deep Learning to Detect Ischemic Necrosis in Small Intestinal Tissue". Photonics 10, nr 7 (21.06.2023): 708. http://dx.doi.org/10.3390/photonics10070708.
Pełny tekst źródłaSheejakumari, V., i B. Sankara Gomathi. "MRI Brain Images Healthy and Pathological Tissues Classification with the Aid of Improved Particle Swarm Optimization and Neural Network". Computational and Mathematical Methods in Medicine 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/807826.
Pełny tekst źródłaRozprawy doktorskie na temat "Imaging in a neural tissue"
Hui, Sai-kam, i 許世鑫. "Magnetic resonance diffusion tensor imaging for neural tissue characterization". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841306.
Pełny tekst źródłaHui, Sai-kam. "Magnetic resonance diffusion tensor imaging for neural tissue characterization". Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42841306.
Pełny tekst źródłaEppelheimer, Maggie S. "Identification of Chiari Malformation Type I Brain Morphology and Biomechanics: A Multi-Faceted Approach to Determine Diagnostic and Treatment Criteria". University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1595680107882868.
Pełny tekst źródłaMayerich, David Matthew. "Acquisition and reconstruction of brain tissue using knife-edge scanning microscopy". Texas A&M University, 2003. http://hdl.handle.net/1969.1/563.
Pełny tekst źródłaAbdeladim, Lamiae. "Large volume multicolor nonlinear microscopy of neural tissues". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX070/document.
Pełny tekst źródłaMultiphoton microscopy has transformed neurobiology since the 1990s by enabling 3D imaging of thick tissues at subcellular resolution. However the depths provided by multiphoton microscopy are limited to a few hundreds of micrometers inside scattering tissues such as the brain. In the recent years, several strategies have emerged to overcome this depth limitation and to access larger volumes of tissue. Although these novel approaches are transforming brain imaging, they currently lack efficient multicolor and multicontrast modalities. This work aims at developing large-scale and deep-tissue multiphoton imaging modalities with augmented contrast capabilities. In a first chapter, we present the challenges of high-content large-volume brain imaging, with a particular emphasis on powerful multicolor labeling strategies which have so far been restricted to limited scales. We then introduce chromatic serial multiphoton (Chrom-SMP) microscopy, a method which combines automated histology with multicolor two-photon excitation through wavelength-mixing to access multiple nonlinear contrasts across large volumes, from several mm3 to whole brains, with submicron resolution and intrinsic channel registration. In a third chapter, we explore the potential of this novel approach to open novel experimental paradigms in neurobiological studies. In particular, we demonstrate multicolor volumetric histology of several mm3 of Brainbow-labeled tissues with preserved diffraction-limited resolution and illustrate the strengths of this method through color-based tridimensional analysis of astrocyte morphology, interactions and lineage in the mouse cerebral cortex. We further illustrate the potential of the method through multiplexed whole-brain mapping of axonal projections labeled with distinct tracers. Finally, we develop multimodal three-photon microscopy as a method to access larger depths in live settings
Channappa, Lakshmi [Verfasser], i Thomas [Akademischer Betreuer] Euler. "Electrical Imaging of Aberrant Activity in Neural Tissues Using High Density Microelectrode Arrays / Lakshmi Channappa ; Betreuer: Thomas Euler". Tübingen : Universitätsbibliothek Tübingen, 2016. http://d-nb.info/1199615544/34.
Pełny tekst źródłaRambani, Komal. "Thick brain slice cultures and a custom-fabricated multiphoton imaging system: progress towards development of a 3D hybrot model". Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22702.
Pełny tekst źródłaWellen, Jeremy W. "Characterization of soft-tissue response to mechanical loading using nuclear magnetic resonance (NMR) and functional magnetic resonance imaging (fMRI) of neuronal activity during sustained cognitive-stimulus paradigms". Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0430103-140128.
Pełny tekst źródłaBernal, Moyano Jose. "Deep learning for atrophy quantification in brain magnetic resonance imaging". Doctoral thesis, Universitat de Girona, 2020. http://hdl.handle.net/10803/671699.
Pełny tekst źródłaLa cuantificación de la atrofia cerebral es fundamental en la neuroinformática ya que permite diagnosticar enfermedades cerebrales, evaluar su progresión y determinar la eficacia de los nuevos tratamientos para contrarrestarlas. Sin embargo, éste sigue siendo un problema abierto y difícil, ya que el rendimiento de los métodos tradicionales depende de los protocolos y la calidad de las imágenes, los errores de armonización de los datos y las anomalías del cerebro. En esta tesis doctoral, cuestionamos si los métodos de aprendizaje profundo pueden ser utilizados para estimar mejor la atrofia cerebral a partir de imágenes de resonancia magnética. Nuestro trabajo muestra que el aprendizaje profundo puede conducir a un rendimiento de vanguardia en las evaluaciones transversales y competir y superar los métodos tradicionales de cuantificación de la atrofia longitudinal. Creemos que los métodos transversales y longitudinales propuestos pueden ser beneficiosos para la comunidad investigadora y clínica
Killich, Markus. "Tissue Doppler Imaging". Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-67089.
Pełny tekst źródłaKsiążki na temat "Imaging in a neural tissue"
Brandt, Roland, i Lidia Bakota. Laser scanning microscopy and quantitative image analysis of neuronal tissue. New York: Humana Press, 2014.
Znajdź pełny tekst źródłaBilston, Lynne E., red. Neural Tissue Biomechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-13890-4.
Pełny tekst źródłaBilston, Lynne E. Neural Tissue Biomechanics. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Znajdź pełny tekst źródłaMaeda, Nobuaki. Neural proteoglycans, 2007. Trivandrum, India: Research Signpost, 2007.
Znajdź pełny tekst źródłaD, Murphey Mark, red. Imaging of soft tissue tumors. Wyd. 2. Philadelphia, PA: Lippincott Williams & Wilkins, 2006.
Znajdź pełny tekst źródłaVanhoenacker, Filip M., Paul M. Parizel i Jan L. Gielen, red. Imaging of Soft Tissue Tumors. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46679-8.
Pełny tekst źródłaKang, Heung Sik, Sung Hwan Hong, Ja-Young Choi i Hye Jin Yoo. Oncologic Imaging: Soft Tissue Tumors. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-287-718-5.
Pełny tekst źródłaDe Schepper, Arthur M., Paul M. Parizel, Luc De Beuckeleer i Filip Vanhoenacker, red. Imaging of Soft Tissue Tumors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-07856-3.
Pełny tekst źródłaDe Schepper, Arthur M., Paul M. Parizel, Frank Ramon, Luc De Beuckeleer i Jan E. Vandevenne, red. Imaging of Soft Tissue Tumors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-07859-4.
Pełny tekst źródłaHiger, H. Peter, i Gernot Bielke, red. Tissue Characterization in MR Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74993-3.
Pełny tekst źródłaCzęści książek na temat "Imaging in a neural tissue"
Huisman, H. J., i J. M. Thijssen. "Application of Artificial Neural Networks in Ultrasonic Tissue Characterization". W Acoustical Imaging, 355–58. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_57.
Pełny tekst źródłaVu, Tania Q., i Sujata Sundara Rajan. "Quantum Dot Imaging of Neural Cells and Tissue". W Nanotechnology for Biology and Medicine, 151–68. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-31296-5_7.
Pełny tekst źródłaLi, Baowang, i Ralph D. Freeman. "Noninvasive Neural Imaging and Tissue Oxygenation in the Visual System". W Neurovascular Coupling Methods, 97–122. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0724-3_6.
Pełny tekst źródłaRector, D. M., G. R. Poe i R. M. Harper. "Fiber Optic Imaging of Subcortical Neural Tissue in Freely Behaving Animals". W Advances in Experimental Medicine and Biology, 81–86. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2468-1_9.
Pełny tekst źródłaZhang, Fan, Junlin Yang, Nariman Nezami, Fabian Laage-gaupp, Julius Chapiro, Ming De Lin i James Duncan. "Liver Tissue Classification Using an Auto-context-based Deep Neural Network with a Multi-phase Training Framework". W Patch-Based Techniques in Medical Imaging, 59–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00500-9_7.
Pełny tekst źródłaAlzyadat, Tariq, Stephan Praet, Girija Chetty, Roland Goecke, David Hughes, Dinesh Kumar, Marijke Welvaert, Nicole Vlahovich i Gordon Waddington. "Automatic Segmentation of Achilles Tendon Tissues Using Deep Convolutional Neural Network". W Machine Learning in Medical Imaging, 444–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59861-7_45.
Pełny tekst źródłaLi, Dongyu, Yanjie Zhao, Chao Zhang i Dan Zhu. "In vivo skull optical clearing for imaging cortical neuron and vascular structure and function". W Handbook of Tissue Optical Clearing, 351–68. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003025252-21.
Pełny tekst źródłaNegahdar, Mohammadreza. "Automatic Grading of Emphysema by Combining 3D Lung Tissue Appearance and Deformation Map Using a Two-Stream Fully Convolutional Neural Network". W Machine Learning in Medical Imaging, 181–90. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21014-3_19.
Pełny tekst źródłaIsogai, Yoh, Douglas S. Richardson, Catherine Dulac i Joseph Bergan. "Optimized Protocol for Imaging Cleared Neural Tissues Using Light Microscopy". W Methods in Molecular Biology, 137–53. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6688-2_11.
Pełny tekst źródłaPati, Pushpak, Guillaume Jaume, Lauren Alisha Fernandes, Antonio Foncubierta-Rodríguez, Florinda Feroce, Anna Maria Anniciello, Giosue Scognamiglio i in. "HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification". W Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, 208–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60365-6_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Imaging in a neural tissue"
Jaswal, Rajeshwer S., Mohammad A. Yaseen, Buyin Fu, David A. Boas i Sava Sakadžic. "High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)". W Neural Imaging and Sensing, redaktorzy E. Duco Jansen i Qingming Luo. SPIE, 2016. http://dx.doi.org/10.1117/12.2212716.
Pełny tekst źródłaBlodgett, David W., Carissa Rodriguez, Austen Lefebvre, Grace Hwang, Marek Mirski, Eyal Bar-Kochba, Aaron Criss i in. "Brain imaging for neural tissue health assessment". W Micro- and Nanotechnology Sensors, Systems, and Applications X, redaktorzy M. Saif Islam, Achyut K. Dutta i Thomas George. SPIE, 2018. http://dx.doi.org/10.1117/12.2305789.
Pełny tekst źródłaOrnelas, Danielle, Md Hasan, Oscar Gonzalez, Giri Krishnan, Jenny I. Szu, Timothy Myers, Koji Hirota, Maxim Bazhenov, Devin K. Binder i Boris H. Park. "Optical changes in cortical tissue during seizure activity using optical coherence tomography (Conference Presentation)". W Neural Imaging and Sensing, redaktorzy Qingming Luo i Jun Ding. SPIE, 2017. http://dx.doi.org/10.1117/12.2253415.
Pełny tekst źródłaKong, Zhenglun, Ting Li, Junyi Luo i Shengpu Xu. "Automatic tissue image segmentation based on image processing and deep learning". W Neural Imaging and Sensing 2018, redaktorzy Qingming Luo i Jun Ding. SPIE, 2018. http://dx.doi.org/10.1117/12.2293481.
Pełny tekst źródłaZhong, Qiuyuan, Chen-Yuan Dong, Xinlei Fu, Xiayi Xu i Shih-Chi Chen. "Fast drug screening platform for cancer treatment based on live tissue culturing and high-speed 3D imaging". W Neural Imaging and Sensing 2022, redaktorzy Qingming Luo, Jun Ding i Ling Fu. SPIE, 2022. http://dx.doi.org/10.1117/12.2609938.
Pełny tekst źródłaSalas, Matthias, Johanna Gesperger, Antonia Lichtenegger, Michael Niederleithner, Laurin Ginner, Adelheid Woehrer, Bernhard Baumann, Tilman Schmoll, Wolfgang Drexler i Rainer A. Leitgeb. "Multi-scale investigation of Alzheimer’s disease brain tissue using 1060 nm swept source optical coherence tomography (Conference Presentation)". W Neural Imaging and Sensing 2020, redaktorzy Qingming Luo, Jun Ding i Ling Fu. SPIE, 2020. http://dx.doi.org/10.1117/12.2544765.
Pełny tekst źródłaZhu, Jun, Hercules Freitas, Izumi Maezawa, Lee-Way Jin i Vivek J. Srinivasan. "1700 nm optical coherence microscopy enables minimally invasive, volumetric, deep tissue optical biopsy of the mouse brain in vivo". W Neural Imaging and Sensing 2021, redaktorzy Qingming Luo, Jun Ding i Ling Fu. SPIE, 2021. http://dx.doi.org/10.1117/12.2577001.
Pełny tekst źródłaTurovets, S. I., i D. M. Tucker. "NIR Imaging of Labeled Human Neural Tissue: Computational Feasibility Studies". W Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.bmd18.
Pełny tekst źródłaBuhmann, Julia M., Stephan Gerhard, Matthew Cook i Jan Funke. "Tracking of microtubules in anisotropic volumes of neural tissue". W 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE, 2016. http://dx.doi.org/10.1109/isbi.2016.7493275.
Pełny tekst źródłaStrenge, Paul, Birgit Lange, Wolfgang Draxinger, Christian Hagel, Christin Grill, Veit Danicke, Dirk Theisen-Kunde i in. "Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks". W Optical Coherence Imaging Techniques and Imaging in Scattering Media, redaktorzy Maciej Wojtkowski, Yoshiaki Yasuno i Benjamin J. Vakoc. SPIE, 2023. http://dx.doi.org/10.1117/12.2670907.
Pełny tekst źródłaRaporty organizacyjne na temat "Imaging in a neural tissue"
Diebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2006. http://dx.doi.org/10.21236/ada456398.
Pełny tekst źródłaDiebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2005. http://dx.doi.org/10.21236/ada435025.
Pełny tekst źródłaDiebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2003. http://dx.doi.org/10.21236/ada415818.
Pełny tekst źródłaBao, Gang. Multifunctional Magnetic Nanoparticle Probes for Deep-Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2005. http://dx.doi.org/10.21236/ada434280.
Pełny tekst źródłaSubhash, Ghatu. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2014. http://dx.doi.org/10.21236/ada612616.
Pełny tekst źródłaFasching, G. E., W. J. Loudin, D. E. Paton i N. S. Jr Smith. Use of neural networks in the capacitance imaging system. Technical note. Office of Scientific and Technical Information (OSTI), październik 1993. http://dx.doi.org/10.2172/10121969.
Pełny tekst źródłaDiebold, Gerald J. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2008. http://dx.doi.org/10.21236/ada488612.
Pełny tekst źródłaDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2006. http://dx.doi.org/10.21236/ada457700.
Pełny tekst źródłaDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2007. http://dx.doi.org/10.21236/ada472126.
Pełny tekst źródłaPeehl, Donna M. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2013. http://dx.doi.org/10.21236/ada580953.
Pełny tekst źródła