Gotowa bibliografia na temat „Imaging and Therapy”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Imaging and Therapy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Imaging and Therapy"

1

Ciarmiello, Andrea, i Luigi Mansi. "Inaugural Editorial Review – Nuclear Medicine, Diagnostic Imaging and Therapy". Journal of Diagnostic Imaging in Therapy 2, nr 1 (2.02.2015): 1–8. http://dx.doi.org/10.17229/jdit.2015-0202-011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ciarmiello, Andrea, i Luigi Mansi. "Editorial Review 2015 – Nuclear Medicine, Diagnostic Imaging and Therapy". Journal of Diagnostic Imaging in Therapy 3, nr 1 (16.01.2016): 1–6. http://dx.doi.org/10.17229/jdit.2016-0116-020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ciarmiello, Andrea, i Luigi Mansi. "Editorial Review 2016 – Nuclear Medicine, Diagnostic Imaging and Therapy". Journal of Diagnostic Imaging in Therapy 4, nr 1 (20.01.2017): 1–2. http://dx.doi.org/10.17229/jdit.2017-0120-025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Harfi, Thura T., Michael Wesley Milks, David A. Orsinelli, Subha V. Raman, William T. Abraham i Rami Kahwash. "Imaging Device Therapy". Heart Failure Clinics 15, nr 2 (kwiecień 2019): 305–20. http://dx.doi.org/10.1016/j.hfc.2018.12.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mansi, Luigi, Sean Kitson, Vincenzo Cuccurullo i Andrea Ciarmiello. "Basic Premises to Molecular Imaging and Radionuclide Therapy – Part 1". Journal of Diagnostic Imaging in Therapy 1, nr 1 (25.11.2014): 137–56. http://dx.doi.org/10.17229/jdit.2014-1125-010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Moriarty, Thomas M., Ron Kikinis, Ferenc A. Jolesz, Peter McL Black i Eben Alexander. "Magnetic Resonance Imaging Therapy: Intraoperative MR Imaging". Neurosurgery Clinics of North America 7, nr 2 (kwiecień 1996): 323–31. http://dx.doi.org/10.1016/s1042-3680(18)30396-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Scott, Andrew M., i Steven M. Larson. "TUMOR IMAGING AND THERAPY". Radiologic Clinics of North America 31, nr 4 (lipiec 1993): 859–79. http://dx.doi.org/10.1016/s0033-8389(22)02645-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Altai, Mohamed, Rosemery Membreno, Brendon Cook, Vladimir Tolmachev i Brian M. Zeglis. "Pretargeted Imaging and Therapy". Journal of Nuclear Medicine 58, nr 10 (7.07.2017): 1553–59. http://dx.doi.org/10.2967/jnumed.117.189944.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chandrashekhar, Y. "Imaging for Improving Therapy". JACC: Cardiovascular Imaging 6, nr 5 (maj 2013): 582–86. http://dx.doi.org/10.1016/j.jcmg.2013.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Abraham, Theodore, David Kass, Giovanni Tonti, Gery F. Tomassoni, William T. Abraham, Jeroen J. Bax i Thomas H. Marwick. "Imaging Cardiac Resynchronization Therapy". JACC: Cardiovascular Imaging 2, nr 4 (kwiecień 2009): 486–97. http://dx.doi.org/10.1016/j.jcmg.2009.01.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Imaging and Therapy"

1

Heard, Sarah. "Bremsstrahlung Imaging for Radionuclide Therapy". Thesis, Institute of Cancer Research (University Of London), 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487454.

Pełny tekst źródła
Streszczenie:
Beta-emitting radioisotopes such as 90y & 32p do not emit gamma radiation, and so their detection during radionuclide therapies relies on the bremsstrahlung photons released when electrons interact in tissue. The aim of this project was to optimise acquisition parameters (energy window and collimator) for imaging the complex spectra, which are continuous up to relatively high energies, and are of low intensity. Experimental work and theoretical explorations used a combination of list-mode acquisition on an ADAC Forte gamma camera and EGSnrc Monte Carlo simulations. Initially, the camera's energy linearity was investigated and appropriate settings selected for the wide energy range. Photon kernels were developed to approximate beta sources in simulations and were shown to increase speeds significantly. Acquisitions and simulations were then made of a range of phantoms containing 90y or 32p, with low, meditirn and high energy collimation. The data were binned into narrow energy windows, and the resulting images were assessed for vari a tion in qual ity with energy and collima tor, and with parameters such as depth and source-to-background ra tio. Medium energy collimation was found to offer the best compromise between sensitivity and spatial resolution. Image contrast was highest in energy windows near 100 keY, but signal-to-noise ratios (SNR) were highest at lower energies. Wide windows showed improved SNR without significant loss of spatial resolution or contrast. A setting of 60 to 170 keY was selected for the clinic, allowing for practical limits on the camera's window width. The Monte Carlo simulations demonstrated which photon interactions led to these results, for example at which energies septal penetration began to dominate, and how much of the blurring at low energies was due to characteristic x-rays produced in the collimator. The results of this work have been used for initial investigations into the optimisation of analogue imaging with gamma-emitting radioisotopes, for example 111In for 9OY.
Style APA, Harvard, Vancouver, ISO itp.
2

Morin, Kevin Wayne. "Scintigraphic imaging during gene therapy". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21605.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Ian Ying-Li. "Molecular imaging of cardiac gene therapy /". May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Shao, Ning. "Sensing, imaging and photodynamic therapy of cancer". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 73 p, 2007. http://proquest.umi.com/pqdweb?did=1400965061&sid=14&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Vernooij, Robbin Ralf. "New materials for cancer imaging and therapy". Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/102985/.

Pełny tekst źródła
Streszczenie:
Metal-based photoactivated chemotherapy (PACT) involves a class of metal- based prodrugs, which may overcome the limitations and side effects of current metal-based chemotherapeutic agents on account of their novel mechanism(s) of action. In this thesis, a number of vibrational spectroscopic methods were developed and applied to study the mechanisms of metal-based PACT agents upon activation with light. A particularly promising PACT agent is the diazido Pt(IV) anticancer prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (1, py = pyrdine), in which photoinduced cleavage of ligands from platinum yields reactive species, which are likely implicated with the observed biological activity. However, monitoring the azido and hydroxido ligands, and the metal centre simultaneously remains challenging. Vibrational spectroscopy is a potentially powerful tool to study both metal and ligand vibrations without the requirement of labelling and is non- destructive at the same time. The essential first step was the screening of 1 by a range of vibrational spectroscopic methods, including Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), Raman and synchrotron radiation far-infrared (SR-FIR), aided by Density Functional Theory (DFT). This yielded an extensive vibrational fingerprint of 1 containing individual ligand (pyridine, hydroxide and azide) and platinum to ligand vibrations. The established methodologies provided the necessary basis for elucidating further photodecomposition and photoreaction pathways. Successive ATR-FTIR studies allowed for examinations of the photodecomposition of 1 complemented by transient electronic absorption and UV-Vis spectroscopy under 420 nm or 310 nm irradiation. Chemometric data evaluation using Principal Component Analysis (PCA) and Multi Curve Resolution Alternating Least Squares (MCR-ALS) on the steady state UV-Vis and ATR-FTIR spectra captured the formation of a Pt(II) intermediate, trans-[Pt(N3)(py)2(OH/H2O)] and a final product, trans-[Pt(py)2(OH/H2O)2], in which the trans pyridine scaffolds were retained. Upon irradiation, the rapid removal of the hydroxido stretching vibration was found to correlate to a shift in the anti-symmetric azido vibration, indicative of a possible second intermediate. Experimental evidence of subsequent azido dissociation from platinum suggests that at least one hydroxyl radical is formed in the reduction of Pt(IV) to Pt(II) under such conditions. Additionally, photoproducts formed upon irradiation of 1 in the presence of the DNA nucleotide 5’-guanosine monophosphate (5’- GMP) could be systematically studied using ATR-FTIR, mass spectrometry and DFT calculations. Underpinning methodologies were subsequently applied to study a series of photoactivatable ruthenium-based CO releasing complexes of the formula [RuLCl2(CO)2] (L = 2,2’-bipyridine with 4’ methyl and/or carboxyl substituents). A three-step mechanism involving the sequential formation of [RuL(CO)(CH3CN)Cl2], [RuL(CH3CN)2Cl2] and [RuL(CH3CN)3Cl]+ was deduced upon 350 nm irradiation in acetonitrile. Rapid removal of the first CO ligand (k1 ≫ 3 min−1 ) and a modest rate for the second CO ligand (k2 = 0.099 – 0.17 min−1 ) was observed, with slowest rates found for the electron-withdrawing carboxyl substituents. Aqueous media considerably slowed down the photodecarbonylation (k1 = 0.46 – 1.3 min−1 and k2 = 0.026 – 0.035 min−1 ) and the carboxyl groups were shown to have a less pronounced effect on the rate constants, revealing the possible implications for the design of such candidates intended for clinical application. State-of-the-art synchrotron based infrared spectroscopy was utilised with continued focus on the mechanism of action of 1. ATR-FTIR and synchrotron radiation far-infrared were combined (SR-ATR-FIR) to enable the rapid screening of samples, exposing changes to the metal to ligand vibrations of 1. Additionally, in situ irradiation using liquid transmission SR-FIR revealed the removal of in the platinum to oxygen (hydroxide) and platinum to nitrogen (azide) vibrations simultaneously. Moreover, a mid-infrared live single cell study of 1 on acute myeloid leukaemia cells (K562) by Synchrotron Radiation Infrared Microspectroscopy revealed significant changes to DNA base stacking and lipid vibrations after only four hours of low dose irradiation at 350 nm (2.58 J cm- 2 ). Lastly, the low wavelength excitation of the earlier described photoactivatable metal-based anticancer prodrug candidates was considered, which commonly hamper their clinical feasibility. A range of lanthanide-doped upconverting nanoparticles (UCNPs) were synthesised, allowing for near-infrared light excitation and visible light emission as a potential platform for wavelength activation of PACT agents in a clinically-relevant window.
Style APA, Harvard, Vancouver, ISO itp.
6

McDannold, Nathan J. "MRI monitoring of high temperature ultrasound therapy /". Thesis, Connect to Dissertations & Theses @ Tufts University, 2002.

Znajdź pełny tekst źródła
Streszczenie:
Thesis (Ph.D.)--Tufts University, 2002.
Adviser: David Weaver. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 218-243). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Style APA, Harvard, Vancouver, ISO itp.
7

Holstensson, Maria. "Quantitative gamma camera imaging for radionuclide therapy dosimetry". Thesis, Institute of Cancer Research (University Of London), 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533648.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gregory, Rebecca Anne. "Quantitative 124I pet imaging for radioiodine therapy disimetry". Thesis, University of London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kharin, Alexander. "Group IV nanoparticles for cell imaging and therapy". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1032/document.

Pełny tekst źródła
Streszczenie:
La biomédecine et la biophotonique sont des champs de recherches en plein expansion qui grandissent à vive allure, constituant un secteur entier d'activités novatrices. Ce secteur, vraiment interdisciplinaire, comprend le développement de nouveaux nanomatériaux, de sources lumineuses et l'élaboration de nouveaux concepts, de dispositifs/équipements pour quantifier la conversion de photons et leurs interactions. L'importance décisive du diagnostic précoce et du traitement individuel des patients exige des thérapies soigneusement ciblées et la capacité de provoquer sélectivement la mort cellulaire des cellules malades. Malgré les progrès spectaculaires réalisés en utilisant les points quantiques ou des molécules biologiques organiques pour l'imagerie biologique et la libération ciblée de médicaments, plusieurs problèmes restent à résoudre : obtenir une sélectivité accrue pour une accumulation spécifique dans les tumeurs et une amélioration de l'efficacité des traitements. D'autres problèmes incluent la cytotoxicité et la génotoxicité, l'élimination lente et la stabilité chimique imparfaite. Des espérances nouvelles sont portées par de nouvelles classes de matériaux inorganiques comme les nanoparticules à base de silicium ou à base de carbone, qui pourraient faire preuves de caractéristiques de stabilité plus prometteuses tant pour le diagnostic médical que pour la thérapie. Pour cette raison, la découverte de nouveaux agents de marquage et de transport de médicaments représente un champ important de la recherche avec un potentiel de croissance renforcé
Biomedicine and biophotonics related businesses are currently growing at a breathtaking pace, thereby comprising one of the fastest growing sectors of innovative economy. This sector is truly interdisciplinary, including, very prominently, the development of novel nanomaterials, light sources, or novel device/equipment concepts to carry out photon conversion or interaction. The great importance of disease diagnosis at a very early stage and of the individual treatment of patients requires a carefully targeted therapy and the ability to induce cell death selectively in diseased cells. Despite the tremendous progress achieved by using quantum dots or organic molecules for bio-imaging and drug delivery, some problems still remain to be solved: increased selectivity for tumor accumulation, and enhancement of treatment efficiency. Other potential problems include cyto- and genotoxicity, slow clearance and low chemical stability. Significant expectations are now related to novel classes of inorganic materials, such as silicon-based or carbon-based nanoparticles, which could exhibit more stable and promising characteristics for both medical diagnostics and therapy. For this reason, new labeling and drug delivery agents for medical application is an important field of research with strongly-growing potential.The 5 types of group IV nanoparticles had been synthesized by various methods. First one is the porous silicon, produced by the electrochemical etching of bulk silicon wafer. That well-known technique gives the material with remarkably bright photoluminescence and the complicated porous structure. The porous silicon particles are the agglomerates of the small silicon crystallites with 3nm size. Second type is 20 nm crystalline silicon particles, produced by the laser ablation of the bulk silicon in water. Those particles have lack of PL under UV excitation, but they can luminesce under 2photon excitation conditions. 3rd type of the particles is the 8 nm nanodiamonds
Style APA, Harvard, Vancouver, ISO itp.
10

Foy, Susan Patricia. "Multifunctional Magnetic Nanoparticles for Cancer Imaging and Therapy". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1319836040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Imaging and Therapy"

1

Hamblin, Michael R. Imaging in Photodynamic Therapy. Boca Raton: Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b21922.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hamblin, Michael R., i Yingying Huang, red. Imaging in Photodynamic Therapy. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315278179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

American Association of Physicists in Medicine. Summer School. Imaging in radiation therapy. Secaucus, N.J: Springer Verlag, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Nishino, Mizuki, red. Therapy Response Imaging in Oncology. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31171-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Aglietta, Massimo, i Daniele Regge, red. Imaging Tumor Response to Therapy. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2613-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Vallabhajosula, Shankar. Molecular Imaging and Targeted Therapy. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23205-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Shields, Anthony F., i Pat Price, red. In Vivo Imaging of Cancer Therapy. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-341-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jolesz, Ferenc A., red. Intraoperative Imaging and Image-Guided Therapy. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7657-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

1920-, Robertson James S., i Held Kathryn D, red. Nuclear medicine therapy. New York: Thieme Medical Publishers, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Srivastava, Suresh C., red. Radiolabeled Monoclonal Antibodies for Imaging and Therapy. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5538-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Imaging and Therapy"

1

Adelsmayr, Gabriel, Gisela Sponner i Michael Fuchsjäger. "Minimal Invasive Therapy". W Breast Imaging, 359–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94918-1_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Liang, Yajie, i Jeff W. M. Bulte. "IMAGING CELL THERAPY". W Drug Delivery Applications of Noninvasive Imaging, 223–51. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118356845.ch10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Farshey, Reza. "Imaging technologies". W Current Therapy in Endodontics, 15–26. Hoboken, New Jersey: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119067757.ch2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lång, Kristina, i Miri Sklair Levy. "Breast Imaging". W Breast Cancer Radiation Therapy, 49–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91170-6_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bambace, Santa, Giuseppe Bove, Stefania Carbone, Samantha Cornacchia, Angelo Errico, Maria Cristina Frassanito, Giovanna Lovino, Anna Maria Grazia Pastore i Girolamo Spagnoletti. "Radiation Therapy". W Imaging Gliomas After Treatment, 23–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31210-7_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Testa, Laura, i Renata Colombo Bonadio. "Adjuvant Therapy". W Modern Breast Cancer Imaging, 435–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84546-9_19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

de Camargo Moraes, Paula. "Radiation Therapy". W Modern Breast Cancer Imaging, 415–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84546-9_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bambace, Santa, Stefania Carbone i Tommaso Scarabino. "Radiation Therapy". W Imaging Gliomas After Treatment, 17–19. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2370-3_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Weis, Serge, Michael Sonnberger, Andreas Dunzinger, Eva Voglmayr, Martin Aichholzer, Raimund Kleiser i Peter Strasser. "Therapy-Induced Lesions". W Imaging Brain Diseases, 2107–18. Vienna: Springer Vienna, 2019. http://dx.doi.org/10.1007/978-3-7091-1544-2_82.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

DeSousa, Keith G., i Albert S. Favate. "Medical Therapy of Acute Stroke". W Neurovascular Imaging, 413–23. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-9029-6_40.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Imaging and Therapy"

1

Dupuy, Clément, Samuel Powell, Terence S. Leung i François Ramaz. "Acousto-optic imaging and reconstruction in highly scattering media: towards quantitative imaging". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jw3a.9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Stepp, Herbert, Ronald Sroka i Walter Stummer. "Intra-operative Brain Tumor Imaging". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm2a.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zakariya, Abdullah J. "Integrated Dual Wavelength LED for Irradiation Blood Therapy". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jtu3a.42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wang, Jing, i Jun Liu. "PEI-Folic acid modified carbon nanodots for cancer cells targeted delivery and two-photon excitation imaging". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.51.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Rossi, Vincent M., i Steven L. Jacques. "Assessing mitochondrial swelling due to apoptosis via optical scatter imaging and a digital Fourier holographic microscope". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.ptu3a.3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Levenson, Richard, Zachary Harmany i Farzad Fereidouni. "Histopathology Methods, Assays and their Applications". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Guo, Qiang, Hongwei Chen, Yuxi Wang, Minghua Chen, Sigang Yang i Shizhong Xie. "High-throughput compressed sensing based imaging flow cytometry". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gemmell, N. R., A. McCarthy, M. M. Kim, I. Veilluex, T. C. Zhu, G. S. Buller, B. C. Wilson i R. H. Hadfield. "A Compact Fiber Optic Based Singlet Oxygen Luminescence Sensor". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Glaser, Adam K., i Jonathan T. C. Liu. "A light sheet microscopy system for rapid, volumetric imaging and pathology of large tissue specimens". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Elfer, Katherine, Andrew Sholl i J. Quincy Brown. "Evaluation of Lung and Prostate Biospecimens at the Point-of-Acquisition with a Dual-Color Fluorescent H&E Analog". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Imaging and Therapy"

1

Cai, Weibo. Molecular Imaging and Therapy of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, październik 2015. http://dx.doi.org/10.21236/ada630120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Su, Min-Ying. MR Imaging and Gene Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada398125.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Panchapakesan, Balaji. Integrated Molecular Imaging and Therapy for Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2008. http://dx.doi.org/10.21236/ada494146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Su, Min-Ying. MR Imaging and Gene Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1999. http://dx.doi.org/10.21236/ada382893.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Panchapakesan, Balaji. Integrated Molecular Imaging and Therapy for Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2007. http://dx.doi.org/10.21236/ada474716.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Pan, Dongfeng. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2005. http://dx.doi.org/10.21236/ada442718.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Sharkey, Robert M. Bispecific Antibody Pretargeting for Improving Cancer Imaging and Therapy. Office of Scientific and Technical Information (OSTI), luty 2005. http://dx.doi.org/10.2172/898305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Pan, Dongfeng. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2003. http://dx.doi.org/10.21236/ada415953.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pan, Dongfeng. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2004. http://dx.doi.org/10.21236/ada425757.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lapi, Suzanne E. Production of Radiohalogens: Bromine and Astatine for Imaging and Therapy. Office of Scientific and Technical Information (OSTI), listopad 2019. http://dx.doi.org/10.2172/1575920.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii