Gotowa bibliografia na temat „Imaging and Therapy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Imaging and Therapy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Imaging and Therapy"
Ciarmiello, Andrea, i Luigi Mansi. "Inaugural Editorial Review – Nuclear Medicine, Diagnostic Imaging and Therapy". Journal of Diagnostic Imaging in Therapy 2, nr 1 (2.02.2015): 1–8. http://dx.doi.org/10.17229/jdit.2015-0202-011.
Pełny tekst źródłaCiarmiello, Andrea, i Luigi Mansi. "Editorial Review 2015 – Nuclear Medicine, Diagnostic Imaging and Therapy". Journal of Diagnostic Imaging in Therapy 3, nr 1 (16.01.2016): 1–6. http://dx.doi.org/10.17229/jdit.2016-0116-020.
Pełny tekst źródłaCiarmiello, Andrea, i Luigi Mansi. "Editorial Review 2016 – Nuclear Medicine, Diagnostic Imaging and Therapy". Journal of Diagnostic Imaging in Therapy 4, nr 1 (20.01.2017): 1–2. http://dx.doi.org/10.17229/jdit.2017-0120-025.
Pełny tekst źródłaHarfi, Thura T., Michael Wesley Milks, David A. Orsinelli, Subha V. Raman, William T. Abraham i Rami Kahwash. "Imaging Device Therapy". Heart Failure Clinics 15, nr 2 (kwiecień 2019): 305–20. http://dx.doi.org/10.1016/j.hfc.2018.12.011.
Pełny tekst źródłaMansi, Luigi, Sean Kitson, Vincenzo Cuccurullo i Andrea Ciarmiello. "Basic Premises to Molecular Imaging and Radionuclide Therapy – Part 1". Journal of Diagnostic Imaging in Therapy 1, nr 1 (25.11.2014): 137–56. http://dx.doi.org/10.17229/jdit.2014-1125-010.
Pełny tekst źródłaMoriarty, Thomas M., Ron Kikinis, Ferenc A. Jolesz, Peter McL Black i Eben Alexander. "Magnetic Resonance Imaging Therapy: Intraoperative MR Imaging". Neurosurgery Clinics of North America 7, nr 2 (kwiecień 1996): 323–31. http://dx.doi.org/10.1016/s1042-3680(18)30396-6.
Pełny tekst źródłaScott, Andrew M., i Steven M. Larson. "TUMOR IMAGING AND THERAPY". Radiologic Clinics of North America 31, nr 4 (lipiec 1993): 859–79. http://dx.doi.org/10.1016/s0033-8389(22)02645-8.
Pełny tekst źródłaAltai, Mohamed, Rosemery Membreno, Brendon Cook, Vladimir Tolmachev i Brian M. Zeglis. "Pretargeted Imaging and Therapy". Journal of Nuclear Medicine 58, nr 10 (7.07.2017): 1553–59. http://dx.doi.org/10.2967/jnumed.117.189944.
Pełny tekst źródłaChandrashekhar, Y. "Imaging for Improving Therapy". JACC: Cardiovascular Imaging 6, nr 5 (maj 2013): 582–86. http://dx.doi.org/10.1016/j.jcmg.2013.04.002.
Pełny tekst źródłaAbraham, Theodore, David Kass, Giovanni Tonti, Gery F. Tomassoni, William T. Abraham, Jeroen J. Bax i Thomas H. Marwick. "Imaging Cardiac Resynchronization Therapy". JACC: Cardiovascular Imaging 2, nr 4 (kwiecień 2009): 486–97. http://dx.doi.org/10.1016/j.jcmg.2009.01.005.
Pełny tekst źródłaRozprawy doktorskie na temat "Imaging and Therapy"
Heard, Sarah. "Bremsstrahlung Imaging for Radionuclide Therapy". Thesis, Institute of Cancer Research (University Of London), 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487454.
Pełny tekst źródłaMorin, Kevin Wayne. "Scintigraphic imaging during gene therapy". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21605.pdf.
Pełny tekst źródłaChen, Ian Ying-Li. "Molecular imaging of cardiac gene therapy /". May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Pełny tekst źródłaShao, Ning. "Sensing, imaging and photodynamic therapy of cancer". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 73 p, 2007. http://proquest.umi.com/pqdweb?did=1400965061&sid=14&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaVernooij, Robbin Ralf. "New materials for cancer imaging and therapy". Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/102985/.
Pełny tekst źródłaMcDannold, Nathan J. "MRI monitoring of high temperature ultrasound therapy /". Thesis, Connect to Dissertations & Theses @ Tufts University, 2002.
Znajdź pełny tekst źródłaAdviser: David Weaver. Submitted to the Dept. of Physics. Includes bibliographical references (leaves 218-243). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Holstensson, Maria. "Quantitative gamma camera imaging for radionuclide therapy dosimetry". Thesis, Institute of Cancer Research (University Of London), 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533648.
Pełny tekst źródłaGregory, Rebecca Anne. "Quantitative 124I pet imaging for radioiodine therapy disimetry". Thesis, University of London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531335.
Pełny tekst źródłaKharin, Alexander. "Group IV nanoparticles for cell imaging and therapy". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1032/document.
Pełny tekst źródłaBiomedicine and biophotonics related businesses are currently growing at a breathtaking pace, thereby comprising one of the fastest growing sectors of innovative economy. This sector is truly interdisciplinary, including, very prominently, the development of novel nanomaterials, light sources, or novel device/equipment concepts to carry out photon conversion or interaction. The great importance of disease diagnosis at a very early stage and of the individual treatment of patients requires a carefully targeted therapy and the ability to induce cell death selectively in diseased cells. Despite the tremendous progress achieved by using quantum dots or organic molecules for bio-imaging and drug delivery, some problems still remain to be solved: increased selectivity for tumor accumulation, and enhancement of treatment efficiency. Other potential problems include cyto- and genotoxicity, slow clearance and low chemical stability. Significant expectations are now related to novel classes of inorganic materials, such as silicon-based or carbon-based nanoparticles, which could exhibit more stable and promising characteristics for both medical diagnostics and therapy. For this reason, new labeling and drug delivery agents for medical application is an important field of research with strongly-growing potential.The 5 types of group IV nanoparticles had been synthesized by various methods. First one is the porous silicon, produced by the electrochemical etching of bulk silicon wafer. That well-known technique gives the material with remarkably bright photoluminescence and the complicated porous structure. The porous silicon particles are the agglomerates of the small silicon crystallites with 3nm size. Second type is 20 nm crystalline silicon particles, produced by the laser ablation of the bulk silicon in water. Those particles have lack of PL under UV excitation, but they can luminesce under 2photon excitation conditions. 3rd type of the particles is the 8 nm nanodiamonds
Foy, Susan Patricia. "Multifunctional Magnetic Nanoparticles for Cancer Imaging and Therapy". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1319836040.
Pełny tekst źródłaKsiążki na temat "Imaging and Therapy"
Hamblin, Michael R. Imaging in Photodynamic Therapy. Boca Raton: Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b21922.
Pełny tekst źródłaHamblin, Michael R., i Yingying Huang, red. Imaging in Photodynamic Therapy. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315278179.
Pełny tekst źródłaAmerican Association of Physicists in Medicine. Summer School. Imaging in radiation therapy. Secaucus, N.J: Springer Verlag, 1998.
Znajdź pełny tekst źródłaNishino, Mizuki, red. Therapy Response Imaging in Oncology. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31171-1.
Pełny tekst źródłaAglietta, Massimo, i Daniele Regge, red. Imaging Tumor Response to Therapy. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2613-1.
Pełny tekst źródłaVallabhajosula, Shankar. Molecular Imaging and Targeted Therapy. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23205-3.
Pełny tekst źródłaShields, Anthony F., i Pat Price, red. In Vivo Imaging of Cancer Therapy. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-341-7.
Pełny tekst źródłaJolesz, Ferenc A., red. Intraoperative Imaging and Image-Guided Therapy. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7657-3.
Pełny tekst źródła1920-, Robertson James S., i Held Kathryn D, red. Nuclear medicine therapy. New York: Thieme Medical Publishers, 1987.
Znajdź pełny tekst źródłaSrivastava, Suresh C., red. Radiolabeled Monoclonal Antibodies for Imaging and Therapy. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5538-0.
Pełny tekst źródłaCzęści książek na temat "Imaging and Therapy"
Adelsmayr, Gabriel, Gisela Sponner i Michael Fuchsjäger. "Minimal Invasive Therapy". W Breast Imaging, 359–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94918-1_17.
Pełny tekst źródłaLiang, Yajie, i Jeff W. M. Bulte. "IMAGING CELL THERAPY". W Drug Delivery Applications of Noninvasive Imaging, 223–51. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118356845.ch10.
Pełny tekst źródłaFarshey, Reza. "Imaging technologies". W Current Therapy in Endodontics, 15–26. Hoboken, New Jersey: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119067757.ch2.
Pełny tekst źródłaLång, Kristina, i Miri Sklair Levy. "Breast Imaging". W Breast Cancer Radiation Therapy, 49–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91170-6_9.
Pełny tekst źródłaBambace, Santa, Giuseppe Bove, Stefania Carbone, Samantha Cornacchia, Angelo Errico, Maria Cristina Frassanito, Giovanna Lovino, Anna Maria Grazia Pastore i Girolamo Spagnoletti. "Radiation Therapy". W Imaging Gliomas After Treatment, 23–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31210-7_3.
Pełny tekst źródłaTesta, Laura, i Renata Colombo Bonadio. "Adjuvant Therapy". W Modern Breast Cancer Imaging, 435–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84546-9_19.
Pełny tekst źródłade Camargo Moraes, Paula. "Radiation Therapy". W Modern Breast Cancer Imaging, 415–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84546-9_18.
Pełny tekst źródłaBambace, Santa, Stefania Carbone i Tommaso Scarabino. "Radiation Therapy". W Imaging Gliomas After Treatment, 17–19. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2370-3_3.
Pełny tekst źródłaWeis, Serge, Michael Sonnberger, Andreas Dunzinger, Eva Voglmayr, Martin Aichholzer, Raimund Kleiser i Peter Strasser. "Therapy-Induced Lesions". W Imaging Brain Diseases, 2107–18. Vienna: Springer Vienna, 2019. http://dx.doi.org/10.1007/978-3-7091-1544-2_82.
Pełny tekst źródłaDeSousa, Keith G., i Albert S. Favate. "Medical Therapy of Acute Stroke". W Neurovascular Imaging, 413–23. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-9029-6_40.
Pełny tekst źródłaStreszczenia konferencji na temat "Imaging and Therapy"
Dupuy, Clément, Samuel Powell, Terence S. Leung i François Ramaz. "Acousto-optic imaging and reconstruction in highly scattering media: towards quantitative imaging". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jw3a.9.
Pełny tekst źródłaStepp, Herbert, Ronald Sroka i Walter Stummer. "Intra-operative Brain Tumor Imaging". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm2a.1.
Pełny tekst źródłaZakariya, Abdullah J. "Integrated Dual Wavelength LED for Irradiation Blood Therapy". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jtu3a.42.
Pełny tekst źródłaWang, Jing, i Jun Liu. "PEI-Folic acid modified carbon nanodots for cancer cells targeted delivery and two-photon excitation imaging". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.51.
Pełny tekst źródłaRossi, Vincent M., i Steven L. Jacques. "Assessing mitochondrial swelling due to apoptosis via optical scatter imaging and a digital Fourier holographic microscope". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.ptu3a.3.
Pełny tekst źródłaLevenson, Richard, Zachary Harmany i Farzad Fereidouni. "Histopathology Methods, Assays and their Applications". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.1.
Pełny tekst źródłaGuo, Qiang, Hongwei Chen, Yuxi Wang, Minghua Chen, Sigang Yang i Shizhong Xie. "High-throughput compressed sensing based imaging flow cytometry". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.2.
Pełny tekst źródłaGemmell, N. R., A. McCarthy, M. M. Kim, I. Veilluex, T. C. Zhu, G. S. Buller, B. C. Wilson i R. H. Hadfield. "A Compact Fiber Optic Based Singlet Oxygen Luminescence Sensor". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.3.
Pełny tekst źródłaGlaser, Adam K., i Jonathan T. C. Liu. "A light sheet microscopy system for rapid, volumetric imaging and pathology of large tissue specimens". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.4.
Pełny tekst źródłaElfer, Katherine, Andrew Sholl i J. Quincy Brown. "Evaluation of Lung and Prostate Biospecimens at the Point-of-Acquisition with a Dual-Color Fluorescent H&E Analog". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.cth1a.5.
Pełny tekst źródłaRaporty organizacyjne na temat "Imaging and Therapy"
Cai, Weibo. Molecular Imaging and Therapy of Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, październik 2015. http://dx.doi.org/10.21236/ada630120.
Pełny tekst źródłaSu, Min-Ying. MR Imaging and Gene Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada398125.
Pełny tekst źródłaPanchapakesan, Balaji. Integrated Molecular Imaging and Therapy for Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2008. http://dx.doi.org/10.21236/ada494146.
Pełny tekst źródłaSu, Min-Ying. MR Imaging and Gene Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1999. http://dx.doi.org/10.21236/ada382893.
Pełny tekst źródłaPanchapakesan, Balaji. Integrated Molecular Imaging and Therapy for Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2007. http://dx.doi.org/10.21236/ada474716.
Pełny tekst źródłaPan, Dongfeng. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2005. http://dx.doi.org/10.21236/ada442718.
Pełny tekst źródłaSharkey, Robert M. Bispecific Antibody Pretargeting for Improving Cancer Imaging and Therapy. Office of Scientific and Technical Information (OSTI), luty 2005. http://dx.doi.org/10.2172/898305.
Pełny tekst źródłaPan, Dongfeng. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2003. http://dx.doi.org/10.21236/ada415953.
Pełny tekst źródłaPan, Dongfeng. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2004. http://dx.doi.org/10.21236/ada425757.
Pełny tekst źródłaLapi, Suzanne E. Production of Radiohalogens: Bromine and Astatine for Imaging and Therapy. Office of Scientific and Technical Information (OSTI), listopad 2019. http://dx.doi.org/10.2172/1575920.
Pełny tekst źródła