Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: III-V compound semiconductor nanostructures.

Książki na temat „III-V compound semiconductor nanostructures”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 21 najlepszych książek naukowych na temat „III-V compound semiconductor nanostructures”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Yates, Martin John. Electron microscopy of compound III-V semiconductor layers. Birmingham: University ofBirmingham, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wilmsen, Carl W., red. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4835-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

W, Wilmsen Carl, red. Physics and chemistry of III-V compound semiconductor interfaces. New York: Plenum Press, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Doping in III-V semiconductors. Cambridge [England]: Cambridge University Press, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Liquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Bristol: A. Hilger, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

V, Swaminathan, Pearton S. J, Manasreh Mahmoud Omar i Materials Research Society, red. Degradation mechanisms in III-V compound semiconductor devices and structures: Symposium held April 17-18, 1990, San Francisco, California, U.S.A. Pittsburgh, Pa: Materials Research Society, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wilmsen, Carl. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Springer London, Limited, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wilmsen, Carl W. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Springer, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

III-V Compound Semiconductors and Semiconductor Properties of Superionic Materials. Elsevier, 1988. http://dx.doi.org/10.1016/s0080-8784(08)x6008-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chang, Kow-Ming. Thermodynamics of groups III-V and II-VI compound semiconductors. 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Pearton, S. J., D. K. Sadana i J. M. Zavada. Advanced III-V Compound Semiconductor Growth, Processing and Devices: Volume 240. University of Cambridge ESOL Examinations, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Schubert, E. F. Doping in III-V Semiconductors (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering). Cambridge University Press, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Pearton, S. J., M. O. Manasreh i V. Swaminathan. Degradation Mechanisms in III-V Compound Semiconductor Devices and Structures: Volume 184. University of Cambridge ESOL Examinations, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

J, Pearton S., Sadana Devendra K i Zavada J. M, red. Advanced III-V compound semiconductor growth, processing and devices: Symposium held December 2-5, 1991, Boston, Massachusetts, U.S.A. Pittsburgh, Pa: Materials Research Society, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Willardson, R. K. Semiconductors and Semimetals: Iii-V Compound Semiconductors Semiconductor Properties of Superionic Materials (Semiconductors and Semimetals). Academic Press, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Schulte, Donald W. Growth and characterization of III-V compound semiconductor materials for use in novel MODFET structures and related devices. 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

(Editor), Philippe Max Fauchet, Jillian M. Buriak (Editor), Leigh T. Canham (Editor), Mobuyoshi Koshida (Editor) i Burce E. White (Editor), red. Microcrystalline and Nanocrystalline Semiconductors--2000: Symposium Held November 27-30, 2000, Boston, Massachusetts, U.S.A. (Materials Research Society Symposia Proceedings, V. 638.). Materials Research Society, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Pearton, S. J., i V. Swaminathan. Degradation Mechanisms in Iii-V Compound Semiconductor Devices and Structures: Symposium Held April 17-18, 1990, San Francisco (Materials Research Society Symposium Proceedings). Materials Research Society, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Vvedensky, Dimitri D. Quantum dots: Self-organized and self-limiting assembly. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.6.

Pełny tekst źródła
Streszczenie:
This article describes the self-organized and self-limiting assembly of quantum dots, with particular emphasis on III–V semiconductor quantum dots. It begins with a background on the second industrial revolution, highlighted by advances in information technology and which paved the way for the era of ‘quantum nanostructures’. It then considers the science and technology of quantum dots, followed by a discussion on methods of epitaxial growth and fabrication methodologies of semiconductor quantum dots and other supported nanostructures, including molecular beam epitaxy and metalorganic vapor-phase epitaxy. It also examines self-organization in Stranski–Krastanov systems, site control of quantum dots on patterned substrates, nanophotonics with quantum dots, and arrays of quantum dots.
Style APA, Harvard, Vancouver, ISO itp.
20

Li, Jing, i Xiao-Ying Huang. Nanostructured crystals: An unprecedented class of hybrid semiconductors exhibiting structure-induced quantum confinement effect and systematically tunable properties. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.16.

Pełny tekst źródła
Streszczenie:
This article describes the structure-induced quantum confinement effect in nanostructured crystals, a unique class of hybrid semiconductors that incorporate organic and inorganic components into a single-crystal lattice via covalent (coordinative) bonds to form extended one-, two- and three-dimensional network structures. These structures are comprised of subnanometer-sized II-VI semiconductor segments (inorganic component) and amine molecules (organic component) arranged into perfectly ordered arrays. The article first provides an overview of II-VI and III-V semiconductors, II-VI colloidal quantum dots, inorganic-organic hybrid materials before discussing the design and synthesis of I-VI-based inorganic-organic hybrid nanostructures. It also considers the crystal structures, quantum confinement effect, bandgaps, and optical properties, thermal properties, thermal expansion behavior of nanostructured crystals.
Style APA, Harvard, Vancouver, ISO itp.
21

Glazov, M. M. Hyperfine Interaction of Electron and Nuclear Spins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0004.

Pełny tekst źródła
Streszczenie:
This chapter discusses the key interaction–hyperfine coupling–which underlies most of phenomena in the field of electron and nuclear spin dynamics. This interaction originates from magnetic interaction between the nuclear and electron spins. For conduction band electrons in III–V or II–VI semiconductors, it is reduced to a Fermi contact interaction whose strength is proportional to the probability of finding an electron at the nucleus. A more complex situation is realized for valence band holes where hole Bloch functions vanish at the nuclei. Here the hyperfine interaction is of the dipole–dipole type. The modification of the hyperfine coupling Hamiltonian in nanosystems is also analyzed. The chapter contains also an overview of experimental data aimed at determination of the hyperfine interaction parameters in semiconductors and semiconductor nanostructures.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii