Gotowa bibliografia na temat „III-V compound semiconductor nanostructures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „III-V compound semiconductor nanostructures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "III-V compound semiconductor nanostructures"
John Chelliah, Cyril R. A., i Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures". Nanotechnology Reviews 6, nr 6 (27.11.2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.
Pełny tekst źródłaDubrovskii V. G. "Limiting factors for the growth rate of epitaxial III-V compound semiconductors". Technical Physics Letters 49, nr 4 (2023): 77. http://dx.doi.org/10.21883/tpl.2023.04.55886.19512.
Pełny tekst źródłaXu, Bo, Z. G. Wang, Y. H. Chen, P. Jin, X. L. Ye i Feng Qi Liu. "Controlled Growth of III-V Compound Semiconductor Nano-Structures and Their Application in Quantum-Devices". Materials Science Forum 475-479 (styczeń 2005): 1783–86. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1783.
Pełny tekst źródłaKim, Jong Su, Im Sik Han, Sang Jun Lee i Jin Dong Song. "Droplet Epitaxy for III-V Compound Semiconductor Quantum Nanostructures on Lattice Matched Systems". Journal of the Korean Physical Society 73, nr 2 (lipiec 2018): 190–202. http://dx.doi.org/10.3938/jkps.73.190.
Pełny tekst źródłaZhao, Zuoming, Kameshwar Yadavalli, Zhibiao Hao i Kang L. Wang. "Direct integration of III–V compound semiconductor nanostructures on silicon by selective epitaxy". Nanotechnology 20, nr 3 (16.12.2008): 035304. http://dx.doi.org/10.1088/0957-4484/20/3/035304.
Pełny tekst źródłaNoh, Joo-Hyong, Hajime Asahi, Seong-Jin Kim, Minori Takemoto i Shun-ichi Gonda. "Scanning Tunneling Microscopy/Scanning Tunneling Spectroscopy Observation of III–V Compound Semiconductor Nanostructures". Japanese Journal of Applied Physics 35, Part 1, No. 6B (30.06.1996): 3743–48. http://dx.doi.org/10.1143/jjap.35.3743.
Pełny tekst źródłaДубровский, В. Г. "Лимитирующие факторы скорости роста при эпитаксии полупроводниковых соединений III-V". Письма в журнал технической физики 49, nr 8 (2023): 39. http://dx.doi.org/10.21883/pjtf.2023.08.55137.19512.
Pełny tekst źródłaKang, M., J. H. Wu, S. Huang, M. V. Warren, Y. Jiang, E. A. Robb i R. S. Goldman. "Universal mechanism for ion-induced nanostructure formation on III-V compound semiconductor surfaces". Applied Physics Letters 101, nr 8 (20.08.2012): 082101. http://dx.doi.org/10.1063/1.4742863.
Pełny tekst źródłaZanotti, Simone, Momchil Minkov, Shanhui Fan, Lucio C. Andreani i Dario Gerace. "Doubly-Resonant Photonic Crystal Cavities for Efficient Second-Harmonic Generation in III–V Semiconductors". Nanomaterials 11, nr 3 (28.02.2021): 605. http://dx.doi.org/10.3390/nano11030605.
Pełny tekst źródłaMi, Zetian. "III-V compound semiconductor nanostructures on silicon: epitaxial growth, properties, and applications in light emitting diodes and lasers". Journal of Nanophotonics 3, nr 1 (1.01.2009): 031602. http://dx.doi.org/10.1117/1.3081051.
Pełny tekst źródłaRozprawy doktorskie na temat "III-V compound semiconductor nanostructures"
Grant, Victoria Anne. "Growth and characterisation of III-V semiconductor nanostructures". Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490983.
Pełny tekst źródłaGomes, Rajiv. "Compound III-V semiconductor avalanche photodiodes for X-ray spectroscopy". Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2560/.
Pełny tekst źródłaTey, Chun Maw. "Advanced transmission electron microscopy studies of III-V semiconductor nanostructures". Thesis, University of Sheffield, 2006. http://etheses.whiterose.ac.uk/14901/.
Pełny tekst źródłaGryczynski, Karol Grzegorz. "Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc115090/.
Pełny tekst źródłaLu, Ryan P. "III-V compound semiconductor dopant profiling using scanning spreading resistance microscopy /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3055790.
Pełny tekst źródłaMashigo, Donald. "Raman spectroscopy of ternary III-V semiconducting films". Thesis, Nelson Mandela Metropolitan University, 2009. http://hdl.handle.net/10948/1011.
Pełny tekst źródłaJia, Roger (Roger Qingfeng). "Properties of thin film III-V/IV semiconductor alloys and nanostructures". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113928.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 116-121).
A large amount of research and development has been devoted to engineering materials for the next generation of semiconductor devices with high performance, energy efficiency, and economic viability. To this end, significant efforts have been made to grow semiconductor thin films with the desired properties onto lattice constants with viable, cost effective substrates. Comparatively less effort has been made to explore III-V/IV heterovalent nanostructures and alloys, which may exhibit properties not available in existing materials. The investigation of these structures, grown using MOCVD, is the goal of this thesis and is motivated by two factors: one, that III-V/IV nanostructures should be good thermoelectrics based on the "phonon glass electron crystal" concept, and two, that (GaAs)₁-x(Ge₂)x alloys were observed to exhibit near-infrared room temperature luminescence, a result that can have significant implications for low bandgap optical devices. A survey of various growth conditions was conducted for the growth of the model GaAs/Ge system using MOCVD to gain insight in the epitaxy involving heterovalent materials and to identify structures suitable for investigation for their thermoelectric and optical properties. A significant decrease in the thermal conductivities of GaAs/Ge nanostructures and alloys relative to bulk GaAs and bulk Ge was observed. This reduction can be attributed to the presence of the heterovalent interfaces. The electron mobilities of the structures were determined to be comparable to bulk Ge, indicating minimal disruption to electron transport by the interfaces. A further reduction in thermal conductivity was observed in an (In₀.₁Ga₀.₉As)₀.₈₄(Si0₀.₁Ge₀.₉)₀.₁₆ alloy; the alloy had a thermal conductivity of 4.3 W/m-K, comparable to some state-of-the-art thermoelectric materials. Room temperature photoluminescence measurements of various compositions of (GaAs)₁-x(Ge₂)x alloys revealed a maximum energy transition of 0.8 eV. This bandgap narrowing is the result of composition fluctuations; the fluctuations create regions of lower bandgap, resulting in a weak dependence on luminescence as a function of Ge composition as well as lower bandgap than the homogeneous alloy with the same composition. As silicon was added to the (GaAs)₁-x(Ge₂)x alloy, the bandgap increased despite the composition fluctuations. Based on the results from this work III-V/IV nanostructures show promise for thermoelectric and optical applications.
by Roger Jia.
Ph. D.
McAdoo, James Alexander. "Factors affecting carrier transport in ultrafast III-V compound semiconductor based photodiodes". W&M ScholarWorks, 2000. https://scholarworks.wm.edu/etd/1539623974.
Pełny tekst źródłaThota, Venkata Ramana Kumar. "Tunable Optical Phenomena and Carrier Recombination Dynamics in III-V Semiconductor Nanostructures". Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1451807323.
Pełny tekst źródłaLee, Kyeongkyun. "Modeling and optimization of molecular beam epitaxy for III-V compound semiconductor growth". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/14836.
Pełny tekst źródłaKsiążki na temat "III-V compound semiconductor nanostructures"
Yates, Martin John. Electron microscopy of compound III-V semiconductor layers. Birmingham: University ofBirmingham, 1987.
Znajdź pełny tekst źródłaWilmsen, Carl W., red. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4835-1.
Pełny tekst źródłaW, Wilmsen Carl, red. Physics and chemistry of III-V compound semiconductor interfaces. New York: Plenum Press, 1985.
Znajdź pełny tekst źródłaDoping in III-V semiconductors. Cambridge [England]: Cambridge University Press, 1993.
Znajdź pełny tekst źródłaLiquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Bristol: A. Hilger, 1990.
Znajdź pełny tekst źródłaV, Swaminathan, Pearton S. J, Manasreh Mahmoud Omar i Materials Research Society, red. Degradation mechanisms in III-V compound semiconductor devices and structures: Symposium held April 17-18, 1990, San Francisco, California, U.S.A. Pittsburgh, Pa: Materials Research Society, 1990.
Znajdź pełny tekst źródłaWilmsen, Carl. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Springer London, Limited, 2013.
Znajdź pełny tekst źródłaWilmsen, Carl W. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Springer, 2012.
Znajdź pełny tekst źródłaIII-V Compound Semiconductors and Semiconductor Properties of Superionic Materials. Elsevier, 1988. http://dx.doi.org/10.1016/s0080-8784(08)x6008-9.
Pełny tekst źródłaChang, Kow-Ming. Thermodynamics of groups III-V and II-VI compound semiconductors. 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "III-V compound semiconductor nanostructures"
Pohl, Udo W., Sven Rodt i Axel Hoffmann. "Optical Properties of III–V Quantum Dots". W Semiconductor Nanostructures, 269–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_14.
Pełny tekst źródłaCheng, Keh Yung. "Compound Semiconductor Crystals". W III–V Compound Semiconductors and Devices, 105–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51903-2_4.
Pełny tekst źródłaLiu, Zhaojun, Tongde Huang, Qiang Li, Xing Lu i Xinbo Zou. "III-V Materials and Devices". W Compound Semiconductor Materials and Devices, 31–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02028-5_3.
Pełny tekst źródłaIga, Kenichi, i Susumu Kinoshita. "Epitaxy of III–V Compound Semiconductors". W Process Technology for Semiconductor Lasers, 43–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-79576-3_4.
Pełny tekst źródłaWilmsen, C. W. "Oxide/III-V Compound Semiconductor Interfaces". W Physics and Chemistry of III-V Compound Semiconductor Interfaces, 403–62. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4835-1_7.
Pełny tekst źródłaWilliams, R. H. "III-V Semiconductor Surface Interactions". W Physics and Chemistry of III-V Compound Semiconductor Interfaces, 1–72. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4835-1_1.
Pełny tekst źródłaKiriakidis, G., W. T. Anderson, Z. Hatzopoulos, C. Michelakis i D. V. Morgan. "Metal Contact Degradation on III–V Compound Semiconductors". W Semiconductor Device Reliability, 269–89. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2482-6_14.
Pełny tekst źródłaCheng, Keh Yung. "Electrical Properties of Compound Semiconductor Heterostructures". W III–V Compound Semiconductors and Devices, 243–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51903-2_7.
Pełny tekst źródłaCheng, Keh Yung. "Optical Properties of Compound Semiconductor Heterostructures". W III–V Compound Semiconductors and Devices, 289–337. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51903-2_8.
Pełny tekst źródłaMönch, Winfried. "Oxidation of Silicon and III–V Compound Semiconductors". W Semiconductor Surfaces and Interfaces, 353–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04459-9_17.
Pełny tekst źródłaStreszczenia konferencji na temat "III-V compound semiconductor nanostructures"
Fukui, Takashi, Eiji Nakai, MuYi Chen i Katsuhiro Tomioka. "III-V Compound Semiconductor Nanowire Solar Cells". W Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/pv.2014.pw3c.2.
Pełny tekst źródłaWang, Haiyuan, Collins Ouserigha, Christopher W. Burrows i Gavin R. Bell. "Nanostructures and surface reconstructions in Mn / III–V systems and MnSb". W 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528792.
Pełny tekst źródłaOkada, Yoshitaka. "Current trends in high-efficiency III–V nanostructured solar cells". W 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528774.
Pełny tekst źródłaHEUKEN, M. "NANOSTRUCTURE GROWTH OF III-V COMPOUND SEMICONDUCTOR IN ADVANCED PLANETARY REACTORS®". W Reviews and Short Notes to Nanomeeting '99. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817990_0058.
Pełny tekst źródłaKobayashi, Nobuhiko P. "A new route to grow single-crystal group III-V compound semiconductor nanostructures on non-single-crystal substrates". W Optics East 2007, redaktorzy Nibir K. Dhar, Achyut K. Dutta i M. Saif Islam. SPIE, 2007. http://dx.doi.org/10.1117/12.747485.
Pełny tekst źródłaPynn, Christopher D., Federico L. Gonzalez, Lesley Chan, Alexander Berry, Sang Ho Oh, Tal Margalith, Daniel E. Morse, Shuji Nakamura, Michael J. Gordon i Steven P. DenBaars. "Enhancing light extraction from III-nitride devices using moth-eye nanostructures formed by colloidal lithography". W 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528824.
Pełny tekst źródłaFu, L., H. F. Lu, J. Lee, Z. Li, S. Turner, P. Parkinson, S. Breuer i in. "Nanostructure photovoltaics based on III-V compound semiconductors". W Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asa4a.2.
Pełny tekst źródłaJoyce, H. J., S. Paiman, Q. Gao, H. H. Tan, Y. Kim, L. M. Smith, H. E. Jackson i in. "III-V compound semiconductor nanowires". W 2009 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2009. http://dx.doi.org/10.1109/nmdc.2009.5167572.
Pełny tekst źródłaKobayashi, Nobuhiko P. "Low dimensional III-V compound semiconductor structures". W SPIE NanoScience + Engineering, redaktorzy M. Saif Islam, A. Alec Talin i Stephen D. Hersee. SPIE, 2009. http://dx.doi.org/10.1117/12.829095.
Pełny tekst źródłaFukui, Takashi, Masatoshi Yoshimura, Eiji Nakai i Katsuhiro Tomioka. "III-V Compound Semiconductor Nanowire Solar Cells". W CLEO: Science and Innovations. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_si.2013.cth1m.3.
Pełny tekst źródłaRaporty organizacyjne na temat "III-V compound semiconductor nanostructures"
Hall, Douglas C., Patrick J. Fay, Thomas H. Kosel, Bruce A. Bunker i Russell D. Dupuis. Electronic Properties and Device Applications of III-V Compound Semiconductor Native Oxides. Fort Belvoir, VA: Defense Technical Information Center, marzec 2006. http://dx.doi.org/10.21236/ada449186.
Pełny tekst źródłaHall, Douglas C., Gregory L. Snider i Bruce A. Bunker. III-V Compound Semiconductor Native Oxide Mosfets With Focus on Interface Studies. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada388295.
Pełny tekst źródła