Rozprawy doktorskie na temat „Hyperbolic dynamical systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 46 najlepszych rozpraw doktorskich naukowych na temat „Hyperbolic dynamical systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Ponce, Gabriel. "Fine ergodic properties of partially hyperbolic dynamical systems". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032015-113539/.
Pełny tekst źródłaSeja f : T3 → T3 um difeomorfismo C2 parcialmente hiperbólico, homotópico a um automorfismo de Anosov linear e preservando a medida de volume m. Provamos que se f é Kolmogorov então f é Bernoulli. Estudamos as características da desintegração atômica da medida de volume quando esta ocorre. Provamos que se a medida de volume m tem desintegração atômica nas folhas centrais então a desintegração tem um átomo por folha central. Apresentamos uma condição, a qual depende apenas do expoente de Lyapunov central do difeomorfismo, que garante desintegração atômica da medida de volume. Construímos uma família aberta de difeomorfismos satisfazendo esta condição, o que gerou os primeiros exemplos de folheações que são mensuráveis e ao mesmo tempo minimais. Nesta mesma construção damos os primeiros exemplos de difeomorfismos parcialmente hiperbólicos com expoente de Lyapunov central nulo e homotópico a um Anosov linear.
Petty, Taylor Michael. "Nonlocally Maximal Hyperbolic Sets for Flows". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5558.
Pełny tekst źródłaAl-Nayef, Anwar Ali Bayer, i mikewood@deakin edu au. "Semi-hyperbolic mappings in Banach spaces". Deakin University. School of Computing and Mathematics, 1997. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20051208.110247.
Pełny tekst źródłaGaito, Stephen Thomas. "Shadowing of weakly pseudo-hyperbolic pseudo-orbits in discrete dynamical systems". Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/109461/.
Pełny tekst źródłaWaddington, Simon. "Prime orbit theorems for closed orbits and knots in hyperbolic dynamical systems". Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/109425/.
Pełny tekst źródłaCanestrari, Giovanni. "On the Kolmogorov property of a class of infinite measure hyperbolic dynamical systems". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22352/.
Pełny tekst źródłaLeclerc, Gaétan. "Nonlinearity, fractals, Fourier decay - harmonic analysis of equilibrium states for hyperbolic dynamical systems". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS264.
Pełny tekst źródłaThis PhD lies at the intersection between fractal geometry and hyperbolic dynamics. Being given a (low dimensional) hyperbolic dynamical system in some euclidean space, let us consider a fractal compact invariant subset, and an invariant probability measure supported on this fractal set with good statistical properties, such as the measure of maximal entropy. The question is the following: does the Fourier transform of the measure exhibit power decay ? Our main goal is to give evidence, for several families of hyperbolic dynamical systems, that nonlinearity of the dynamics is enough to prove such decay results. These statements will be obtained using a powerful tool from the field of additive combinatorics: the sum-product phenomenon
Canalias, Vila Elisabet. "Contributions to Libration Orbit Mission Design using Hyperbolic Invariant Manifolds". Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/5927.
Pełny tekst źródłaEl problema restringit de tres cossos és un model per estudiar el moviment d'un cos de massa infinitessimal sota l'atracció gravitatòria de dos cossos molt massius. Els cinc punts d'equilibri d'aquest model, en especial L1 i L2, han estat motiu de nombrosos estudis per aplicacions pràctiques en les últimes dècades (SOHO, Genesis...).
Genèricament, qualsevol missió en òrbita al voltant del punt L2 del sistema Terra-Sol es veu afectat per ocultacions degudes a l'ombra de la Terra. Si l'òrbita és al voltant de L1, els eclipsis són deguts a la forta influència electromagnètica del Sol. D'entre els diferents tipus d'òrbites de libració, les òrbites de Lissajous resulten de la combinació de dues oscil.lacions perpendiculars. El seu principal avantatge és que les amplituds de les oscil.lacions poden ser escollides independentment i això les fa adapatables als requeriments de cada missió. La necessitat d'estratègies per evitar eclipsis en òrbites de Lissajous entorn dels punts L1 i L2 motivaren la primera part de la tesi. En aquesta part es presenta una eina per la planificació de maniobres en òrbites de Lissajous que no només serveix per solucionar el problema d'evitar els eclipsis, sinó també per trobar trajectòries de transferència entre òrbites d'amplituds diferents i planificar rendez-vous.
Per altra banda, existeixen canals de baix cost que uneixen els punts L1 i L2 d'un sistema donat i representen una manera natural de transferir d'una regió de libració a l'altra. Gràcies al seu caràcter hiperbòlic, una òrbita de libració té uns objectes invariants associats: les varietats estable i inestable. Si tenim present que la varietat estable està formada per trajectòries que tendeixen cap a l'òrbita a la qual estan associades quan el temps avança, i que la varietat inestable fa el mateix però enrera en el temps, una intersecció entre una varietat estable i una d'inestable proporciona un camí asimptòtic entre les òrbites corresponents. Un mètode per trobar connexions d'aquest tipus entre òrbites planes entorn de L1 i L2 es presenta a la segona part de la tesi, i s'hi inclouen els resultats d'aplicar aquest mètode als casos dels problemes restringits Sol Terra i Terra-Lluna.
La idea d'intersecar varietats hiperbòliques es pot aplicar també en la cerca de camins de baix cost entre les regions de libració del sistema Sol-Terra i Terra-Lluna. Si existissin camins naturals de les òrbites de libració solars cap a les lunars, s'obtindria una manera barata d'anar a la Lluna fent servir varietats invariants, cosa que no es pot fer de manera directa. I a l'inversa, un camí de les regions de libració lunars cap a les solars permetria, per exemple, que una estació fos col.locada en òrbita entorn del punt L2 lunar i servís com a base per donar servei a les missions que operen en òrbites de libració del sistema Sol-Terra. A la tercera part de la tesi es presenten mètodes per trobar trajectòries de baix cost que uneixen la regió L2 del sistema Terra-Lluna amb la regió L2 del sistema Sol-Terra, primer per òrbites planes i més endavant per òrbites de Lissajous, fent servir dos problemes de tres cossos acoblats. Un cop trobades les trajectòries en aquest model simplificat, convé refinar-les per fer-les més realistes. Una metodologia per obtenir trajectòries en efemèrides reals JPL a partir de les trobades entre òrbites de Lissajous en el model acoblat es presenta a la part final de la tesi. Aquestes trajectòries necessiten una maniobra en el punt d'acoblament, que és reduïda en el procés de refinat, arribant a obtenir trajectòries de cost zero quan això és possible.
This PhD. thesis lies within the field of astrodynamics. It provides solutions to problems which have been identified in mission design near libration points, by using dynamical systems theory.
The restricted three body problem is a well known model to study the motion of an infinitesimal mass under the gravitational attraction of two massive bodies. Its five equilibrium points, specially L1 and L2, have been the object of several studies aimed at practical applications in the last decades (SOHO, Genesis...).
In general, any mission in orbit around L2 of the Sun-Earth system is affected by occultations due to the shadow of the Earth. When the orbit is around L1, the eclipses are caused by the strong electromagnetic influence of the Sun. Among all different types of libration orbits, Lissajous type ones are the combination of two perpendicular oscillations. Its main advantage is that the amplitudes of the oscillations can be chosen independently and this fact makes Lissajous orbits more adaptable to the requirements of each particular mission than other kinds of libration motions. The need for eclipse avoidance strategies in Lissajous orbits around L1 and L2 motivated the first part of the thesis. It is in this part where a tool for planning maneuvers in Lissajous orbits is presented, which not only solves the eclipse avoidance problem, but can also be used for transferring between orbits having different amplitudes and for planning rendez-vous strategies.
On the other hand, there exist low cost channels joining the L1 and L2 points of a given sistem, which represent a natural way of transferring from one libration region to the other one. Furthermore, there exist hyperbolic invariant objects, called stable and unstable manifolds, which are associated with libration orbits due to their hyperbolic character. If we bear in mind that the stable manifold of a libration orbit consists of trajectories which tend to the orbit as time goes by, and that the unstable manifold does so but backwards in time, any intersection between a stable and an unstable manifold will provide an asymptotic path between the corresponding libration orbits. A methodology for finding such asymptotic connecting paths between planar orbits around L1 and L2 is presented in the second part of the dissertation, including results for the particular cases of the Sun-Earth and Earth-Moon problems.
Moreover, the idea of intersecting hyperbolic manifolds can be applied in the search for low cost paths joining the libration regions of different problems, such as the Sun-Earth and the Earth-Moon ones. If natural paths from the solar libration regions to the lunar ones was found, it would provide a cheap way of transferring to the Moon from the vicinity of the Earth, which is not possible in a direct way using invariant manifolds. And the other way round, paths from the lunar libration regions to the solar ones would allow for the placement of a station in orbit around the lunar L2, providing services to solar libration missions, for instance. In the third part of the thesis, a methodology for finding low cost trajectories joining the lunar L2 region and the solar L2 region is presented. This methodology was developed in a first step for planar orbits and in a further step for Lissajous type orbits, using in both cases two coupled restricted three body problems to model the Sun-Earth-Moon spacecraft four body problem. Once trajectories have been found in this simplified model, it is convenient to refine them to more realistic models. A methodology for obtaining JPL real ephemeris trajectories from the initial ones found in the coupled models is presented in the last part of the dissertation. These trajectories need a maneuver at the coupling point, which can be reduced in the refinement process until low cost connecting trajectories in real ephemeris are obtained (even zero cost, when possible).
Högele, Michael, i Ilya Pavlyukevich. "Metastability of Morse-Smale dynamical systems perturbed by heavy-tailed Lévy type noise". Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7063/.
Pełny tekst źródłaCanadell, Cano Marta. "Computation of Normally Hyperbolic Invariant Manifolds". Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/277215.
Pełny tekst źródłaL’objecte d’estudi dels Sistemes Dinàmics és l’evolució dels sistemes respecte del temps. Per aquesta raó, els Sistemes Dinàmics presenten moltes aplicacions en altres àrees de la Ciència, com ara la Física, Biologia, Economia, etc. i tenen nombroses interaccions amb altres parts de les Matemàtiques. Els objectes invariants organitzen el comportament global d’un sistema dinàmic, els més simples dels quals són els punts fixos i les òrbites periòdiques (així com les seves corresponents varietats invariants). Les Varietats Invariants Normalment Hiperbòliques (NHIM forma abreviada provinent de l’anglès) són alguns d’aquests objectes invariants. Aquests objectes posseeixen la propietat de persistir sota petites pertorbacions del sistema. Les NHIM estan caracteritzades pel fet que les direccions en els punts de la varietat presenten una divisió en components tangent, estable i inestable. L’índex de creixement de les direccions estables (per les quals la iteració endavant del sistema tendeix cap a zero) i inestables (per les quals la iteració enrere del sistema tendeix cap a zero) domina l’índex de creixement de les direccions tangents. La robustesa de les varietats invariants normalment hiperbòliques les fa de gran utilitat a l’hora d’estudiar la dinàmica global. Per aquesta raó, tant la teoria com el càlcul d’aquests objectes sós molt importants per al coneixement general d’un sistema dinàmic. L’objectiu principal d’aquesta tesi és desenvolupar algoritmes eficients pel càlcul de varietats invariants normalment hiperbòliques, donar-ne resultats teòrics rigorosos i implementar-los per a explorar nous fenòmens matemàtics. Per simplicitat, considerarem el problema per a sistemes dinàmics discrets, ja que és ben conegut que el cas discret implica el cas continu usant operadors d’evolució. Considerem així difeomorfismes donats per F : Rm → Rm i un d-tor F-invariant parametritzat per K : Td → Rm. És a dir, existeix un difeomorfisme f : Td → Td (la dinàmica interna) tal que satisfà l’equació F ◦ K = K ◦ f, (0.1) anomenada equació d’invariància. La nostra finalitat és solucionar aquesta equació d’invariància considerant dos possibles escenaris: un en el qual no coneixem quina és la dinàmica interna del tor (on K i f són les nostres incògnites), veure Capítol 4, i un altre en el qual imposem que la dinàmica interna sigui una rotació rígida amb freqüència quasi-periòdica (on K és una incògnita i f és la rotació rígida), pel qual necessitarem, a més a més, afegir un paràmetre ajustador a l’equació (0.1), veure Capítols 2 i 3. En ambdós casos també estarem interessats en el càlcul dels fibrats invariants tangent i normals.
Simmons, Skyler C. "Topological Properties of Invariant Sets for Anosov Maps with Holes". BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3101.
Pełny tekst źródłaHemmingsson, Nils. "On the dynamics of a family of critical circle endomorphisms". Thesis, KTH, Matematik (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259743.
Pełny tekst źródłaI den här uppsatsen studerar vi två olika men relaterede treparameterfamiljer av kontinuerligt differentierbara avbildningar från enhetscirkeln till enhetscirkeln som har exakt en kritisk punkt. For den ena familjen visar vi att det finns en mängd av positivt mått av parametrar sådana att det finns en mängd av positivt mått så att för varje punkt i den senarenämnde mängden erfar derivatan exponentiell tillväxt. Vi uppnår detta genom att använda en metod som liknar den som Michael Benedicks och Lennart Carleson använde för att studera den kvadratiska familjen. För den andra familjen försöker vi visa ett liknande men svagare resultat genom att använda en liknande metodik men misslyckas. Vi diskuterar och förklarar vilka svårigheter den senare familjen ger och vilka egenskaper som Benedicks och Carleson använder sig av hos den kvadratiska familjen som vår familj saknar
Dutilleul, Tom. "Dynamique chaotique des espaces-temps spatialement homogènes". Thesis, Paris 13, 2019. http://www.theses.fr/2019PA131019.
Pełny tekst źródłaIn 1963, Belinsky, Khalatnikov and Lifshitz have proposed a conjectural description of the asymptotic geometry of cosmological models in the vicinity of their initial singularity. In particular, it is believed that the asymptotic geometry of generic spatially homogeneous spacetimes should display an oscillatory chaotic behaviour modeled on a discrete map’s dynamics (the so-called Kasner map). We prove that this conjecture holds true, if not for generic spacetimes, at least for a positive Lebesgue measure set of spacetimes. In the context of spatially homogeneous spacetimes, the Einstein field equations can be reduced to a system of differential equations on a finite dimensional phase space: the Wainwright-Hsu equations. The dynamics of these equations encodes the evolution of the geometry of spacelike slices in spatially homogeneous spacetimes. Our proof is based on the non-uniform hyperbolicity of the Wainwright-Hsu equations. Indeed, we consider the return map of the solutions of these equations on a transverse section and prove that it is a non-uniformly hyperbolic map with singularities. This allows us to construct some local stable manifolds à la Pesin for this map and to prove that the union of the orbits starting in these local stable manifolds cover a positive Lebesgue measure set in the phase space. The chaotic oscillatory behaviour of the corresponding spacetimes follows. The Wainwright-Hsu equations turn out to be quite interesting and challenging from a purely dynamical system viewpoint. In order to understand the asymptotic behaviour of (many of) the solutions of these equations, we will in particular be led to: • carry a detailed analysis of the local dynamics of a vector field in the neighborhood of degenerate nonlinearizable partially hyperbolic singularities, • deal with non-uniformly hyperbolic maps with singularities for which the usual theory (due to Pesin and Katok-Strelcyn) is not relevant due to the poor regularity of the maps, • consider some unusual arithmetic conditions expressed in terms of continued fractions and use some rather sophisticated ergodic properties of the Gauss map to prove that these properties are generic
Chaves, Daniel Pedro Bezerra. "Sistemas dinâmicos de eventos discretos com aplicação ao fluxo geodésico em superfícies hiperbólicas". [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260471.
Pełny tekst źródłaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-19T10:50:06Z (GMT). No. of bitstreams: 1 Chaves_DanielPedroBezerra_D.pdf: 1159929 bytes, checksum: 06894c7e904c6209a690af3080f7cc32 (MD5) Previous issue date: 2011
Resumo: Neste trabalho apresentamos um método de descrição combinatorial para o fluxo geodesico sobre uma região hiperbólica compacta, tendo como objetivo associar a seqüências de codificação, parâmetros topologicos oriundos destas superfícies. Isto permite conjugar conceitos topologicos e combinatoriais oriundos das superfícies estudadas com conceitos de teoria da informação e codificação. Demonstramos como a propriedade de completude de um sistema dinâmico de eventos discretos invariantes no tempo se reflete na topologia do espaço de trajetórias do sistema, quando especificadas por seqüências bi-infinitas e descritas sobre um alfabeto finito. A mesma estrutura obtida pelo processo de codificação do fluxo geodesico, e a qual passamos a chamar de sistema simbólico fechado (ssf). Identificamos como um ssf pode ser caracterizado globalmente, através do seu conjunto de restrições irredutíveis, ou localmente, por conjuntos de restrições dependentes do contexto. Ambas derivadas de relações de ordem parcial. Disto determinamos métodos de representação do ssf. Através da relação entre os métodos de codificação aritmético e geométrico, propomos processos de codificação sobre superfícies hiperbólicas, determinando como as representações mínimas das seqüências código do fluxo geodesico podem ser construídas a partir das propriedades topológicas e combinatoriais da superfície
Abstract: In this work we present methods for a combinatorial description of the geodesic flow on a hyperbolic compact surface, with the intent of identifying how the topological parameters of the surface may be associated with discrete sequences. This approach allows to conjugate the topological and combinatorial properties of a surface with concepts of information theory and coding. We determine the intrinsic topological property of complete and time-invariant discrete dynamical systems whose trajectories are bi-infinite sequences over a finite alphabet. The same structure generated by the geodesic flow coding methods, that we call shift space. We show how a shift space can be completely characterized by the irreducible forbidden set and locally by the constraint sets, and how both can be obtained through partial order relations. As consequence of these results, some constructions to represent the shift spaces are proposed. Methods for coding source sequences on hyperbolic surfaces are proposed, based on T-piecewise and common-sets relations that exist between these methods. We conclude by specifying a construction procedure for presentations of arithmetic codes that is related with the topological and combinatorial properties of the hyperbolic surface
Doutorado
Telecomunicações e Telemática
Doutor em Engenharia Elétrica
Leguil, Martin. "Cocycle dynamics and problems of ergodicity". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC159/document.
Pełny tekst źródłaThe following work contains four chapters: the first one is centered around the weak mixing property for interval exchange transformations and translation flows. It is based on the results obtained together with Artur Avila which strengthen previous results due to Artur Avila and Giovanni Forni. The second chapter is dedicated to a joint work with Zhiyuan Zhang, in which we study the properties of stable ergodicity and accessibility for partially hyperbolic systems with center dimension at least two. We show that for dynamically coherent partially hyperbolic diffeomorphisms and under certain assumptions of center bunching and strong pinching, the property of stable accessibility is dense in C^r topology, r>1, and even prevalent in the sense of Kolmogorov. In the third chapter, we explain the results obtained together with Julie Déserti on the properties of a one-parameter family of polynomial automorphisms of C^3; we show that new behaviours can be observed in comparison with the two-dimensional case. In particular, we study the escape speed of points to infinity and show that a transition exists for a certain value of the parameter. The last chapter is based on a joint work with Jiangong You, Zhiyan Zhao and Qi Zhou; we get asymptotic estimates on the size of spectral gaps for quasi-periodic Schrödinger operators in the analytic case. We obtain exponential upper bounds in the subcritical regime, which strengthens a previous result due to Sana Ben Hadj Amor. In the particular case of almost Mathieu operators, we also show exponential lower bounds, which provides quantitative estimates in connection with the so-called "Dry ten Martinis problem". As consequences of our results, we show applications to the homogeneity of the spectrum of such operators, and to Deift's conjecture
Svanström, Fredrik. "Properties of a generalized Arnold’s discrete cat map". Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35209.
Pełny tekst źródłaDISCENDENTI, MARCO. "Secondary elliptic islands in a dynamical system close to hyperbolic". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1402.
Pełny tekst źródłaWe consider a one parameter family of symplectic maps that cross a non-uniformly hyperbolic situation into an elliptic one. We prove that there exists a set of values of the parameter such that the map has secondary elliptic islands.
Glaister, P. "Approximate Riemann solvers for systems of hyperbolic conservation laws". Thesis, University of Reading, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382211.
Pełny tekst źródłaFall, Djiby. "Longtime dynamics of hyperbolic evolutionary equations in ubounded domains and lattice systems". [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001053.
Pełny tekst źródłaMonclair, Daniel. "Dynamique lorentzienne et groupes de difféomorphismes du cercle". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2014. http://tel.archives-ouvertes.fr/tel-01061010.
Pełny tekst źródłaBarril, Basil Carles. "Semilinear hyperbolic equations and the dynamics of gut bacteria". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/643304.
Pełny tekst źródłaIn this thesis we propose a mathematical framework to analyse the dynamics of microorganisms growing within the guts of animals. Such a framework consists of a hyperbolic system of PDEs with non-linear reaction terms and certain boundary conditions that link the microbes in the environment with those inside the hosts. In chapter 1 we solve the Abstract Cauchy Problem associated to the model by considering the semilinear formulation on a certain Banach space X. The semilinear structure of the system obtained in this way is special because, on the one hand, the evolution law can be expressed as the sum of a linear unbounded operator and a non-linear Lipschitz function (which is typical) but, on the other hand, the non-linear perturbation takes values not in X but on a larger space Y which is related to X (which is atypical). In order to deal with this situation we use the theory of dual semigroups. Stability results around steady states are also given when the nonlinear perturbation is Fréchet differentiable. These results are based on two propositions: one relating the local dynamics of the non-linear semiow with the linearised semigroup around the equilibrium, and a second relating the dynamical properties of the linearised semigroup with the spectral values of its generator. The later is proven by showing that the Spectral Mapping Theorem always applies to the semigroups one obtains when the semiow is linearised. In chapter 2 an autonomous semi-linear hyperbolic pde system for the proliferation of bacteria within a heterogeneous population of animals is presented and analysed. It is assumed that bacteria grow inside the intestines and that they can be either attached to the epithelial wall or as free particles in the lumen. A condition involving ecological parameters is given, which can be used to decide the existence of endemic equilibria as well as local stability properties of the non-endemic one. Some implications on phage therapy are addressed. In chapter 3 the basic reproduction number associated to the bacterial population, i.e. the expected number of daughter cells per bacterium, is given explicitly in terms of biological parameters. In addition, an alternative quantity is introduced based on the number of bacteria produced within the intestine by one bacterium originally in the external media. The latter depends on the parameters in a simpler way and provides more biological insight than the standard reproduction number, allowing the design of experimental procedures. Both quantities coincide and are equal to one at the extinction threshold, below which the bacterial population becomes extinct. Optimal values of both reproduction numbers are derived assuming parameter trade-offs.
Unterweger, Kristof Gregor [Verfasser]. "High-Performance Coupling of Dynamically Adaptive Grids and Hyperbolic Equation Systems / Kristof Gregor Unterweger". München : Verlag Dr. Hut, 2017. http://d-nb.info/1126296031/34.
Pełny tekst źródłaPurdy, Daniel S. "An application of the hyperbolic navigation radio system for automated position and control". Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/46061.
Pełny tekst źródłaAs automation in the construction site of the future becomes a reality, position location systems are necessary to provide real-time data to an operator. This thesis addresses problems associated with development of a real time automated position location system using a method similar to hyperbolic navigation methods. The Automated Position and Control (APAC) project is a joint effort between the Civil and Electrical Engineering departments at Virginia Polytechnic and State University and Bechtel Eastern Power Corporation.
Master of Science
Schnellmann, Daniel. "Viana maps and limit distributions of sums of point measures". Phd thesis, KTH, Matematik (Inst.), 2009. http://tel.archives-ouvertes.fr/tel-00694201.
Pełny tekst źródłaGersbacher, Christoph [Verfasser], i Dietmar [Akademischer Betreuer] Kröner. "Higher-order discontinuous finite element methods and dynamic model adaptation for hyperbolic systems of conservation laws". Freiburg : Universität, 2017. http://d-nb.info/1136263853/34.
Pełny tekst źródłaLichtner, Mark. "Exponential dichotomy and smooth invariant center manifolds for semilinear hyperbolic systems". Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981306659.
Pełny tekst źródłaDalal, Abdulsalam Elmabruk Daw. "Shadow Wave Solutions for Some Balance Law Systems". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=104976&source=NDLTD&language=en.
Pełny tekst źródłaRad je posvecen analizi modela gasa bez pritiska uz dodatak izvora. Model je resen koriscenjem senka talasa. U ovom slucaju, izvor predstavlja uticaj gravitacije na cestice u modelu. Za razliku od udarnih talasa, talasi senke koje sadrze delta funkciju, krecu se ubrzano pod gravitacionim uticajem. U drugom delu rada su naprevljeni numericki eksperimenti koji potvrdjuju teoijske rezultate.
Sroczinski, Matthias [Verfasser]. "Global existence and asymptotic decay for quasilinear second-order symmetric hyperbolic systems of partial differential equations occurring in the relativistic dynamics of dissipative fluids / Matthias Sroczinski". Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1184795460/34.
Pełny tekst źródłaMohammadian, Saeed. "Freeway traffic flow dynamics and safety: A behavioural continuum framework". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/227209/1/Saeed_Mohammadian_Thesis.pdf.
Pełny tekst źródłaTrinh, Ngoc Tu. "Étude sur le contrôle / régulation automatique des systèmes non-linéaires hyperboliques". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1195/document.
Pełny tekst źródłaIn this study we are interested in the dynamics of a class of nonlinear systems described by partial differential equations (PDE) of the hyperbolic type. The aim of the study is to construct control laws by dynamic feedback of the output in order to stabilize the system around an equilibrium point on the one hand and to regulate the output to the set-point. We consider the class of systems governed by hyperbolic PDEs with two independent variables (one time variable and one spatial variable). For the well-posed dynamic system not only the initial state but also certain boundary conditions must be prescribed in coherence with the PDEs. We assume that observation and control are punctual. In other words, the action of the control intervenes in the system via the boundary conditions and the observation is carried out at the points of the border. Our study is motivated by the observation that many physical processes are modeled by this type of PDE equations. Examples include processes such as traffic flow in transportation, gas flows in a pipeline network, heat exchangers in process engineering, telegraph equations in transmission lines, civil engineering irrigation channels, to cite but a few.We begin the study with a scalar nonlinear PDE. In this case we propose a stabilizing integral controller which ensures the regulation of the output with zero static error. We prove the local stabilization of the nonlinear system by the integral controller by constructing an appropriate Lyapunov functional. The design of the proportional and integral (PI) controllers that we propose is extended in a framework of two PDE systems. We prove the stabilization of the closed-loop system with a new Lyapunov functional. The synthesis of stabilizing PI controllers is carried out in a framework of networks formed by a finite number of two PDE systems: star network and serial network in cascade. Controls and observations are located at the different connection nodes. For these configurations we present a set of stabilizing PI controllers that regulate the output to the set-point. The PI controllers that we design are validated by numerical simulations from the nonlinear PDE models. The contribution of the thesis compared to the existing literature consists in the development of new Lyapunov functionals for the class of systems looped by a PI controller. Indeed, a large number of results have been obtained from the stabilization of hyperbolic systems by static feedback of the output. However, there are still few results with the stabilization of these systems by the output dynamic feedback. The study of the thesis is devoted to the development of the Lyapunov functional to obtain stabilizing PI controllers. The direct Lyapunov approach that we have proposed has the advantage of allowing to study the robustness of the output dynamic feedback laws in the form of PI controllers with respect to the nonlinearity. Another contribution of the thesis consists of the Malab program construction allowing to carry out numerical simulations for the validation of the conceived controllers. For the numerical resolution of hyperbolic PDEs, we have discretized our systems using the Preissmann numerical scheme. Each time moment we have a system of non-linear algebraic equations to be solved in a recurring way. The contribution of numerical simulations allows us to better understand the application methodology of the infinite dimension control theory
Mercier, Magali. "Étude de différents aspects des EDP hyperboliques : persistance d’onde de choc dans la dynamique des fluides compressibles, modélisation du trafic routier, stabilité des lois de conservation scalaires". Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10246/document.
Pełny tekst źródłaIn this work, we study hyperbolic systems of balance laws. The first part is devoted to compressible fluid dynamics, and particularly to the lifespan of smooth or piecewise smooth solutions. After presenting the state of art, we show an extension to more general gases of a theorem by Grassin.We also study shock waves solutions: first, we extend T. T. Li's approach to estimate the time of existence in the isentropic spherical case; second, we develop Whitham's ideas to obtain an approximated equation satisfied by the discontinuity surface. In the second part, we set up a new model for a roundabout. This leads us to study a multi-class extension of the macroscopic Lighthill-Whitham-Richards' model. We study the traffic on an infinite road, with some points of junction. We distinguish vehicles according to their origin and destination and add some boundary conditions at the junctions. We obtain existence and uniqueness of a weak entropy solution for the Riemann problem. As a complement, we provide numerical simulations that exhibit solutions with a long time of existence. Finally, the Cauchy problem is tackled by the front tracking method. In the last part, we are interested in scalar hyperbolic balance laws. The first question addressed is the control of the total variation and the stability of entropy solutions with respect to flow and source. With this result, we can study equations with non-local flow, which do not fit into the framework of classical theorems. We show here that these kinds of equations are well posed and we show the Gâteaux-differentiability with respect to initial conditions, which is important to characterize maxima or minima of a given cost functional
Al, Zohbi Maryam. "Contributions to the existence, uniqueness, and contraction of the solutions to some evolutionary partial differential equations". Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2646.
Pełny tekst źródłaIn this thesis, we are mainly interested in the theoretical and numerical study of certain equations that describe the dynamics of dislocation densities. Dislocations are microscopic defects in materials, which move under the effect of an external stress. As a first work, we prove a global in time existence result of a discontinuous solution to a diagonal hyperbolic system, which is not necessarily strictly hyperbolic, in one space dimension. Then in another work, we broaden our scope by proving a similar result to a non-linear eikonal system, which is in fact a generalization of the hyperbolic system studied first. We also prove the existence and uniqueness of a continuous solution to the eikonal system. After that, we study this system numerically in a third work through proposing a finite difference scheme approximating it, of which we prove the convergence to the continuous problem, strengthening our outcomes with some numerical simulations. On a different direction, we were enthused by the theory of differential contraction to evolutionary equations. By introducing a new distance, we create a new family of contracting positive solutions to the evolutionary p-Laplacian equation
Mummert, Anna. "Thermodynamic formalism for nonuniformly hyperbolic dynamical systems". 2006. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-1432/index.html.
Pełny tekst źródłaWhittaker, Michael Fredrick. "Poincaré duality and spectral triples for hyperbolic dynamical systems". Thesis, 2010. http://hdl.handle.net/1828/2897.
Pełny tekst źródłaCarrasco, Correa Pablo Daniel. "Compact Dynamical Foliations". Thesis, 2011. http://hdl.handle.net/1807/27574.
Pełny tekst źródłaTalitskaya, Anna. "Partially hyperbolic phenomena in dynamical systems with discrete and continuous time". 2004. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-533/index.html.
Pełny tekst źródła"Some new results on hyperbolic gauss curvature flows". Thesis, 2011. http://library.cuhk.edu.hk/record=b6075160.
Pełny tekst źródłaThesis (Ph.D.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (leaves 99-102).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Wieler, Susana. "Smale spaces with totally disconnected local stable sets". Thesis, 2012. http://hdl.handle.net/1828/3905.
Pełny tekst źródłaGraduate
Bohnet, Doris. "Partially hyperbolic diffeomorphisms with a compact center foliation with finite holonomy". Phd thesis, 2011. http://tel.archives-ouvertes.fr/tel-00782664.
Pełny tekst źródłaWieler, Susana. "Symbolic and geometric representations of unimodular Pisot substitutions". Thesis, 2007. http://hdl.handle.net/1828/131.
Pełny tekst źródłaGarg, Naveen Kumar. "Novel Upwind and Central Schemes for Various Hyperbolic Systems". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/3564.
Pełny tekst źródłaGarg, Naveen Kumar. "Novel Upwind and Central Schemes for Various Hyperbolic Systems". Thesis, 2017. http://etd.iisc.ernet.in/2005/3564.
Pełny tekst źródłaKaushik, K. N. "A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws". Thesis, 2005. https://etd.iisc.ac.in/handle/2005/1661.
Pełny tekst źródłaKaushik, K. N. "A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws". Thesis, 2005. http://etd.iisc.ernet.in/handle/2005/1661.
Pełny tekst źródłaHante, Falk Michael [Verfasser]. "Hybrid dynamics comprising modes governed by partial differential equations : modeling, analysis and control for semilinear hyperbolic systems in one space dimension / vorgelgt von Falk Michael Hante". 2010. http://d-nb.info/1006656782/34.
Pełny tekst źródłaEl-Khatib, Mayar. "Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement". Thesis, 2010. http://hdl.handle.net/10012/5741.
Pełny tekst źródła