Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Hyperbolic balance laws.

Rozprawy doktorskie na temat „Hyperbolic balance laws”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 16 najlepszych rozpraw doktorskich naukowych na temat „Hyperbolic balance laws”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Sen, Chhanda. "Entropy stable numerical schemes for hyperbolic balance laws". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ehrt, Julia [Verfasser]. "Cascades of heteroclinic connections in hyperbolic balance laws / Julia Ehrt". Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.V, 2010. http://d-nb.info/1042738963/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ehrt, Julia [Verfasser]. "Cascades of heteroclinic connections in hyperbolic balance laws / Julia Michael Ehrt". Berlin : Freie Universität Berlin, 2010. http://nbn-resolving.de/urn:nbn:de:kobv:188-fudissthesis000000015791-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Weldegiyorgis, Gediyon Yemane. "Numerical stabilization with boundary controls for hyperbolic systems of balance laws". Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/60870.

Pełny tekst źródła
Streszczenie:
In this dissertation, boundary stabilization of a linear hyperbolic system of balance laws is considered. Of particular interest is the numerical boundary stabilization of such systems. An analytical stability analysis of the system will be presented as a preamble. A discussion of the application of the analysis on speci c examples: telegrapher equations, isentropic Euler equations, Saint-Venant equations and Saint-Venant-Exner equations is also presented. The rst order explicit upwind scheme is applied for the spatial discretization. For the temporal discretization a splitting technique is applied. A discrete 𝕃 ²−Lyapunov function is employed to investigate conditions for the stability of the system. A numerical analysis is undertaken and convergence of the solution to its equilibrium is proved. Further a numerical implementation is presented. The numerical computations also demonstrate the stability of the numerical scheme with parameters chosen to satisfy the stability requirements.
Dissertation (MSc)--University of Pretoria, 2016.
Mathematics and Applied Mathematics
MSc
Unrestricted
Style APA, Harvard, Vancouver, ISO itp.
5

ROSSI, ELENA. "Balance Laws: Non Local Mixed Systems and IBVPs". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/103090.

Pełny tekst źródła
Streszczenie:
Scalar hyperbolic balance laws in several space dimensions play a central role in this thesis. First, we deal with a new class of mixed parabolic-hyperbolic systems on all R^n: we obtain the basic well-posedness theorems, devise an ad hoc numerical algorithm, prove its convergence and investigate the qualitative properties of the solutions. The extension of these results to bounded domains requires a deep understanding of the initial boundary value problem (IBVP) for hyperbolic balance laws. The last part of the thesis provides rigorous estimates on the solution to this IBVP, under precise regularity assumptions. In Chapter 1 we introduce a predator-prey model. A non local and non linear balance law is coupled with a parabolic equation: the former describes the evolution of the predator density, the latter that of prey. The two equations are coupled both through the convective part of the balance law and the source terms. The drift term is a non local function of the prey density. This allows the movement of predators to be directed towards the regions where the concentration of prey is higher. We prove the well-posedness of the system, hence the existence and uniqueness of solution, the continuous dependence from the initial data and various stability estimates. In Chapter 2 we devise an algorithm to compute approximate solutions to the mixed system introduced above. The balance law is solved numerically by a Lax-Friedrichs type method via dimensional splitting, while the parabolic equation is approximated through explicit finite-differences. Both source terms are integrated by means of a second order Runge-Kutta scheme. The key result in Chapter 2 is the convergence of this algorithm. The proof relies on a careful tuning between the parabolic and the hyperbolic methods and exploits the non local nature of the convective part in the balance law. This algorithm has been implemented in a series of Python scripts. Using them, we obtain information about the possible order of convergence and we investigate the qualitative properties of the solutions. Moreover, we observe the formation of a striking pattern: while prey diffuse, predators accumulate on the vertices of a regular lattice. The analytic study of the system above is on all R^n. However, both possible biological applications and numerical integrations suggest that the boundary plays a relevant role. With the aim of studying the mixed hyperbolic-parabolic system in a bounded domain, we noticed that for balance laws known results lack some of the estimates necessary to deal with the coupling. In Chapter 3 we then focus on the IBVP for a general balance law in a bounded domain. We prove the well-posedness of this problem, first with homogeneous boundary condition, exploiting the vanishing viscosity technique and the doubling of variables method, then for the non homogeneous case, mainly thanks to elliptic techniques. We pay particular attention to the regularity assumptions and provide rigorous estimates on the solution.
Style APA, Harvard, Vancouver, ISO itp.
6

Mantri, Yogiraj Verfasser], Sebastian [Akademischer Betreuer] Noelle i Michael [Akademischer Betreuer] [Herty. "Computing near-equilibrium solutions for hyperbolic balance laws on networks / Yogiraj Mantri ; Sebastian Noelle, Michael Herty". Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1228433038/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gerster, Stephan [Verfasser], Michael [Akademischer Betreuer] Herty, Martin [Akademischer Betreuer] Frank i Simone [Akademischer Betreuer] Göttlich. "Stabilization and uncertainty quantification for systems of hyperbolic balance laws / Stephan Gerster ; Michael Herty, Martin Frank, Simone Göttlich". Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1216638136/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schmitt, Johann Michael [Verfasser]. "Optimal Control of Initial-Boundary Value Problems for Hyperbolic Balance Laws with Switching Controls and State Constraints / Johann Michael Schmitt". München : Verlag Dr. Hut, 2019. http://d-nb.info/1188516450/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tang, Ying. "Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT054/document.

Pełny tekst źródła
Streszczenie:
Les dynamiques des systèmes modélisés par des équations aux dérivées partielles (EDPs) en dimension infinie sont largement liées aux réseaux physiques. La synthèse de la commande et l'analyse de la stabilité de ces systèmes sont étudiées dans cette thèse. Les systèmes singulièrement perturbés, contenant des échelles de temps multiples sont naturels dans les systèmes physiques avec des petits paramètres parasitaires, généralement de petites constantes de temps, les masses, les inductances, les moments d'inertie. La théorie des perturbations singulières a été introduite pour le contrôle à la fin des années $1960$, son assimilation dans la théorie du contrôle s'est rapidement développée et est devenue un outil majeur pour l'analyse et la synthèse de la commande des systèmes. Les perturbations singulières sont une façon de négliger la transition rapide, en la considérant dans une échelle de temps rapide séparée. Ce travail de thèse se concentre sur les systèmes hyperboliques linéaires avec des échelles de temps multiples modélisées par un petit paramètre de perturbation. Tout d'abord, nous étudions une classe de systèmes hyperboliques linéaires singulièrement perturbés. Comme le système contient deux échelles de temps, en mettant le paramètre de la perturbation à zéro, deux sous-systèmes, le système réduit et la couche limite, sont formellement calculés. La stabilité du système complet de lois de conservation implique la stabilité des deux sous-systèmes. En revanche un contre-exemple est utilisé pour illustrer que la stabilité des deux sous-systèmes ne suffit pas à garantir la stabilité du système complet. Cela montre une grande différence avec ce qui est bien connu pour les systèmes linéaires en dimension finie modélisés par des équations aux dérivées ordinaires (EDO). De plus, sous certaines conditions, l'approximation de Tikhonov est obtenue pour tels systèmes par la méthode de Lyapunov. Plus précisément, la solution de la dynamique lente du système complet est approchée par la solution du système réduit lorsque le paramètre de la perturbation est suffisamment petit. Deuxièmement, le théorème de Tikhonov est établi pour les systèmes hyperboliques linéaires singulièrement perturbés de lois d'équilibre où les vitesses de transport et les termes sources sont à la fois dépendant du paramètre de la perturbation ainsi que les conditions aux bords. Sous des hypothèses sur la continuité de ces termes et sous la condition de la stabilité, l'estimation de l'erreur entre la dynamique lente du système complet et le système réduit est obtenue en fonction de l'ordre du paramètre de la perturbation. Troisièmement, nous considérons des systèmes EDO-EDP couplés singulièrement perturbés. La stabilité des deux sous-systèmes implique la stabilité du système complet où le paramètre de la perturbation est introduit dans la dynamique de l'EDP. D'autre part, cela n'est pas valable pour le système où le paramètre de la perturbation est présent dans l'EDO. Le théorème Tikhonov pour ces systèmes EDO-EDP couplés est prouvé par la technique de Lyapunov. Enfin, la synthèse de la commande aux bords est abordée en exploitant la méthode des perturbations singulières. Le système réduit converge en temps fini. La synthèse du contrôle aux bords est mise en œuvre pour deux applications différentes afin d'illustrer les résultats principaux de ce travail
Systems modeled by partial differential equations (PDEs) with infinite dimensional dynamics are relevant for a wide range of physical networks. The control and stability analysis of such systems become a challenge area. Singularly perturbed systems, containing multiple time scales, often occur naturally in physical systems due to the presence of small parasitic parameters, typically small time constants, masses, inductances, moments of inertia. Singular perturbation was introduced in control engineering in late $1960$s, its assimilation in control theory has rapidly developed and has become a tool for analysis and design of control systems. Singular perturbation is a way of neglecting the fast transition and considering them in a separate fast time scale. The present thesis is concerned with a class of linear hyperbolic systems with multiple time scales modeled by a small perturbation parameter. Firstly we study a class of singularly perturbed linear hyperbolic systems of conservation laws. Since the system contains two time scales, by setting the perturbation parameter to zero, the two subsystems, namely the reduced subsystem and the boundary-layer subsystem, are formally computed. The stability of the full system implies the stability of both subsystems. However a counterexample is used to illustrate that the stability of the two subsystems is not enough to guarantee the full system's stability. This shows a major difference with what is well known for linear finite dimensional systems. Moreover, under certain conditions, the Tikhonov approximation for such system is achieved by Lyapunov method. Precisely, the solution of the slow dynamics of the full system is approximated by the solution of the reduced subsystem for sufficiently small perturbation parameter. Secondly the Tikhonov theorem is established for singularly perturbed linear hyperbolic systems of balance laws where the transport velocities and source terms are both dependent on the perturbation parameter as well as the boundary conditions. Under the assumptions on the continuity for such terms and under the stability condition, the estimate of the error between the slow dynamics of the full system and the reduced subsystem is the order of the perturbation parameter. Thirdly, we consider singularly perturbed coupled ordinary differential equation ODE-PDE systems. The stability of both subsystems implies that of the full system where the perturbation parameter is introduced into the dynamics of the PDE system. On the other hand, this is not true for system where the perturbation parameter is presented to the ODE. The Tikhonov theorem for such coupled ODE-PDE systems is proved by Lyapunov technique. Finally, the boundary control synthesis is achieved based on singular perturbation method. The reduced subsystem is convergent in finite time. Boundary control design to different applications are used to illustrate the main results of this work
Style APA, Harvard, Vancouver, ISO itp.
10

MARCELLINI, FRANCESCA. "Conservation laws in gas dynamics and traffic flow". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7487.

Pełny tekst źródła
Streszczenie:
This PhD thesis is concerned with applications of nonlinear systems of conservation laws to gas dynamics and traffic flow modeling. The first part is devoted to the analytical description of a fluid flowing in a tube with varying cross section. We study the 2x2 model of the p-system and than, we extend the properties to the full 3x3 Euler system. We also consider a general nxn strictly hyperbolic system of balance laws; we study the Cauchy problem for this system and we apply this result to the fluid flow in a pipe wiyh varying section. Concerning traffic flow, we introduce a new macroscopic model, based on a non-smooth 2x2 system of conservation laws. We study the Riemann problem for this system and the qualitative properties of its solutions that are relevant from the point of view of traffic.
Style APA, Harvard, Vancouver, ISO itp.
11

Ali, Qasim. "Contribution to the mathematical modeling of immune response". Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00905603.

Pełny tekst źródła
Streszczenie:
The early steps of activation are crucial in deciding the fate of T-cells leading to the proliferation. These steps strongly depend on the initial conditions, especially the avidity of the T-cell receptor for the specific ligand and the concentration of this ligand. The recognition induces a rapid decrease of membrane TCR-CD3 complexes inside the T-cell, then the up-regulation of CD25 and then CD25-IL2 binding which down-regulates into the T-cell. This process can be monitored by flow cytometry technique. We propose several models based on the level of complexity by using population balance modeling technique to study the dynamics of T-cells population density during the activation process. These models provide us a relation between the population of T-cells with their intracellular and extracellular components. Moreover, the hypotheses are proposed for the activation process of daughter T-cells after proliferation. The corresponding population balance equations (PBEs) include reaction term (i.e. assimilated as growth term) and activation term (i.e. assimilated as nucleation term). Further the PBEs are solved by newly developed method that is validated against analytical method wherever possible and various approximate techniques available in the literature.
Style APA, Harvard, Vancouver, ISO itp.
12

Dalal, Abdulsalam Elmabruk Daw. "Shadow Wave Solutions for Some Balance Law Systems". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=104976&source=NDLTD&language=en.

Pełny tekst źródła
Streszczenie:
In the first part, the pressureless gas dynamic system with source (body force) is examined and solved by using Shadow Waves. The source represents gravity and Shadow Wave solution (containing the delta function) shows acceleration (contrary to shocks, for example). In the second part, one will nd numerical calculations that conrms the above results.
Rad je posvecen analizi modela gasa bez pritiska uz dodatak izvora. Model je resen koriscenjem senka talasa. U ovom slucaju, izvor predstavlja uticaj gravitacije na cestice u modelu. Za razliku od udarnih talasa, talasi senke koje sadrze delta funkciju, krecu se ubrzano pod gravitacionim uticajem. U drugom delu rada su naprevljeni numericki eksperimenti koji potvrdjuju teoijske rezultate.
Style APA, Harvard, Vancouver, ISO itp.
13

Le, Minh Hoang. "Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant". Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2059/document.

Pełny tekst źródła
Streszczenie:
L’objectif global de ce travail est d’étudier une modélisation multi échelle et de développer une méthode adaptée pour la simulation numérique du processus d’érosion à l’échelle du bassin versant. Après avoir passé en revue les différents modèles existants, nous dérivons une solution analytique non triviale pour le système couplé modélisant le transport de sédiments par charriage. Ensuite, nous étudions l’hyperbolicité de ce système avec diverses lois de sédimentation proposées dans la littérature. Concernant le schéma numérique, nous présentons le domaine de validité de la méthode de splitting, pour les équations modélisant l’écoulement et celle décrivant l’évolution du fond. Pour la modélisation du transport en suspension à l’échelle de la parcelle, nous présentons un système d’équations couplant les mécanismes d’infiltration, de ruissellement et le transport de plusieurs classes de sédiments. L’implémentation et des tests de validation d’un schéma d’ordre élevé et de volumes finis bien équilibré sont également présentés. Ensuite, nous discutons sur l’application et la calibration du modèle avec des données expérimentales sur dix parcelles au Niger. Dans le but d’aboutir la simulation à l’échelle du bassin versant, nous développons une modélisation multi échelle dans laquelle nous intégrons le taux d’inondation dans les équations d’évolution afin de prendre en compte l’effet à petite échelle de la microtopographie. Au niveau numérique, nous étudions deux schémas bien équilibrés : le schéma de Roe basé sur un chemin conservatif, et le schéma avec reconstruction hydrostatique généralisée. Enfin, nous présentons une première application du modèle avec les données expérimentales du bassin versant de Ganspoel qui nécessite la parallélisation du code
The overall objective of this thesis is to study a multiscale modelling and to develop a suitable method for the numerical simulation of soil erosion on catchment scale. After reviewing the various existing models, we derive an analytical solution for the non-trivial coupled system modelling the bedload transport. Next, we study the hyperbolicity of the system with different sedimentation laws found in the literature. Relating to the numerical method, we present the validity domain of the time splitting method, consisting in solving separately the Shallow-Water system (modelling the flow routing) during a first time step for a fixed bed and updating afterward the topography on a second step using the Exner equation. On the modelling of transport in suspension at the plot scale, we present a system coupling the mechanisms of infiltration, runoff and transport of several classes of sediment. Numerical implementation and validation tests of a high order wellbalanced finite volume scheme are also presented. Then, we discuss on the model application and calibration using experimental data on ten 1 m2 plots of crusted soil in Niger. In order to achieve the simulation at the catchment scale, we develop a multiscale modelling in which we integrate the inundation ratio in the evolution equations to take into account the small-scale effect of the microtopography. On the numerical method, we study two well-balanced schemes : the first one is the Roe scheme based on a path conservative, and the second one is the scheme using a generalized hydrostatic reconstruction. Finally, we present a first model application with experimental data of the Ganspoel catchment where the parallel computing is also motived
Style APA, Harvard, Vancouver, ISO itp.
14

Meena, Asha Kumari. "Robust numerical schemes for hyperbolic balance laws". Thesis, 2018. http://localhost:8080/xmlui/handle/12345678/7566.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Chang, Chia-Hung, i 張嘉宏. "An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/a2f8ep.

Pełny tekst źródła
Streszczenie:
碩士
國立中央大學
數學系
101
In this thesis, we consider a 2 × 2 degenerate hyperbolic system of conservation laws whose second equation does not have the term related to the time-derivative of unknowns. The Riemann problem of such conservation laws is studied. We introduce an iteration scheme to construct the weak solutions of the Riemann problem. The weak solutions are obtained based on the characteristic method, Rankine-Hugoniot condition for discontinuous solutions and the iteration to the elementary waves for homogeneous systems.
Style APA, Harvard, Vancouver, ISO itp.
16

Chou, Shih-Wei, i 周世偉. "Global Existence and Time Asymptotic Stability of Solutions to Nonlinear Hyperbolic Systems of Balance Laws". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/17462722550360119327.

Pełny tekst źródła
Streszczenie:
博士
國立中央大學
數學系
101
We study the Cauchy problem for general nonlinear hyperbolic balance laws assuming time-oscillating fluxes and sources. Such nonlinear balance laws arise in, for instance, the nozzle flows of gas dynamics with time periodic ducts, traffic models incorporating lane changing effects model and shallow water equations with time-dependent river’s bottom. The global existence of weak solutions is established by a new version of the generalized Glimm method which incorporates asymptotic expansions of the fluxes and sources. We prove existence of weak solutions and demonstrate that they are indeed entropy solutions satisfying the entropy inequality. The approximate solutions of the perturbed Riemann problem, the building blocks of the generalized Glimm scheme, are constructed by a modified Lax method, and a generalized version of the wave interaction estimates are provided for the proof of stability. The consistency of the scheme is established by proving the weak convergence of the residuals and source terms, thereby extending the methods introduced in [12].
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii