Rozprawy doktorskie na temat „Hyperbolic balance laws”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 16 najlepszych rozpraw doktorskich naukowych na temat „Hyperbolic balance laws”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Sen, Chhanda. "Entropy stable numerical schemes for hyperbolic balance laws". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8135.
Pełny tekst źródłaEhrt, Julia [Verfasser]. "Cascades of heteroclinic connections in hyperbolic balance laws / Julia Ehrt". Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.V, 2010. http://d-nb.info/1042738963/34.
Pełny tekst źródłaEhrt, Julia [Verfasser]. "Cascades of heteroclinic connections in hyperbolic balance laws / Julia Michael Ehrt". Berlin : Freie Universität Berlin, 2010. http://nbn-resolving.de/urn:nbn:de:kobv:188-fudissthesis000000015791-0.
Pełny tekst źródłaWeldegiyorgis, Gediyon Yemane. "Numerical stabilization with boundary controls for hyperbolic systems of balance laws". Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/60870.
Pełny tekst źródłaDissertation (MSc)--University of Pretoria, 2016.
Mathematics and Applied Mathematics
MSc
Unrestricted
ROSSI, ELENA. "Balance Laws: Non Local Mixed Systems and IBVPs". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/103090.
Pełny tekst źródłaMantri, Yogiraj Verfasser], Sebastian [Akademischer Betreuer] Noelle i Michael [Akademischer Betreuer] [Herty. "Computing near-equilibrium solutions for hyperbolic balance laws on networks / Yogiraj Mantri ; Sebastian Noelle, Michael Herty". Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1228433038/34.
Pełny tekst źródłaGerster, Stephan [Verfasser], Michael [Akademischer Betreuer] Herty, Martin [Akademischer Betreuer] Frank i Simone [Akademischer Betreuer] Göttlich. "Stabilization and uncertainty quantification for systems of hyperbolic balance laws / Stephan Gerster ; Michael Herty, Martin Frank, Simone Göttlich". Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1216638136/34.
Pełny tekst źródłaSchmitt, Johann Michael [Verfasser]. "Optimal Control of Initial-Boundary Value Problems for Hyperbolic Balance Laws with Switching Controls and State Constraints / Johann Michael Schmitt". München : Verlag Dr. Hut, 2019. http://d-nb.info/1188516450/34.
Pełny tekst źródłaTang, Ying. "Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT054/document.
Pełny tekst źródłaSystems modeled by partial differential equations (PDEs) with infinite dimensional dynamics are relevant for a wide range of physical networks. The control and stability analysis of such systems become a challenge area. Singularly perturbed systems, containing multiple time scales, often occur naturally in physical systems due to the presence of small parasitic parameters, typically small time constants, masses, inductances, moments of inertia. Singular perturbation was introduced in control engineering in late $1960$s, its assimilation in control theory has rapidly developed and has become a tool for analysis and design of control systems. Singular perturbation is a way of neglecting the fast transition and considering them in a separate fast time scale. The present thesis is concerned with a class of linear hyperbolic systems with multiple time scales modeled by a small perturbation parameter. Firstly we study a class of singularly perturbed linear hyperbolic systems of conservation laws. Since the system contains two time scales, by setting the perturbation parameter to zero, the two subsystems, namely the reduced subsystem and the boundary-layer subsystem, are formally computed. The stability of the full system implies the stability of both subsystems. However a counterexample is used to illustrate that the stability of the two subsystems is not enough to guarantee the full system's stability. This shows a major difference with what is well known for linear finite dimensional systems. Moreover, under certain conditions, the Tikhonov approximation for such system is achieved by Lyapunov method. Precisely, the solution of the slow dynamics of the full system is approximated by the solution of the reduced subsystem for sufficiently small perturbation parameter. Secondly the Tikhonov theorem is established for singularly perturbed linear hyperbolic systems of balance laws where the transport velocities and source terms are both dependent on the perturbation parameter as well as the boundary conditions. Under the assumptions on the continuity for such terms and under the stability condition, the estimate of the error between the slow dynamics of the full system and the reduced subsystem is the order of the perturbation parameter. Thirdly, we consider singularly perturbed coupled ordinary differential equation ODE-PDE systems. The stability of both subsystems implies that of the full system where the perturbation parameter is introduced into the dynamics of the PDE system. On the other hand, this is not true for system where the perturbation parameter is presented to the ODE. The Tikhonov theorem for such coupled ODE-PDE systems is proved by Lyapunov technique. Finally, the boundary control synthesis is achieved based on singular perturbation method. The reduced subsystem is convergent in finite time. Boundary control design to different applications are used to illustrate the main results of this work
MARCELLINI, FRANCESCA. "Conservation laws in gas dynamics and traffic flow". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7487.
Pełny tekst źródłaAli, Qasim. "Contribution to the mathematical modeling of immune response". Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00905603.
Pełny tekst źródłaDalal, Abdulsalam Elmabruk Daw. "Shadow Wave Solutions for Some Balance Law Systems". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=104976&source=NDLTD&language=en.
Pełny tekst źródłaRad je posvecen analizi modela gasa bez pritiska uz dodatak izvora. Model je resen koriscenjem senka talasa. U ovom slucaju, izvor predstavlja uticaj gravitacije na cestice u modelu. Za razliku od udarnih talasa, talasi senke koje sadrze delta funkciju, krecu se ubrzano pod gravitacionim uticajem. U drugom delu rada su naprevljeni numericki eksperimenti koji potvrdjuju teoijske rezultate.
Le, Minh Hoang. "Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant". Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2059/document.
Pełny tekst źródłaThe overall objective of this thesis is to study a multiscale modelling and to develop a suitable method for the numerical simulation of soil erosion on catchment scale. After reviewing the various existing models, we derive an analytical solution for the non-trivial coupled system modelling the bedload transport. Next, we study the hyperbolicity of the system with different sedimentation laws found in the literature. Relating to the numerical method, we present the validity domain of the time splitting method, consisting in solving separately the Shallow-Water system (modelling the flow routing) during a first time step for a fixed bed and updating afterward the topography on a second step using the Exner equation. On the modelling of transport in suspension at the plot scale, we present a system coupling the mechanisms of infiltration, runoff and transport of several classes of sediment. Numerical implementation and validation tests of a high order wellbalanced finite volume scheme are also presented. Then, we discuss on the model application and calibration using experimental data on ten 1 m2 plots of crusted soil in Niger. In order to achieve the simulation at the catchment scale, we develop a multiscale modelling in which we integrate the inundation ratio in the evolution equations to take into account the small-scale effect of the microtopography. On the numerical method, we study two well-balanced schemes : the first one is the Roe scheme based on a path conservative, and the second one is the scheme using a generalized hydrostatic reconstruction. Finally, we present a first model application with experimental data of the Ganspoel catchment where the parallel computing is also motived
Meena, Asha Kumari. "Robust numerical schemes for hyperbolic balance laws". Thesis, 2018. http://localhost:8080/xmlui/handle/12345678/7566.
Pełny tekst źródłaChang, Chia-Hung, i 張嘉宏. "An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/a2f8ep.
Pełny tekst źródła國立中央大學
數學系
101
In this thesis, we consider a 2 × 2 degenerate hyperbolic system of conservation laws whose second equation does not have the term related to the time-derivative of unknowns. The Riemann problem of such conservation laws is studied. We introduce an iteration scheme to construct the weak solutions of the Riemann problem. The weak solutions are obtained based on the characteristic method, Rankine-Hugoniot condition for discontinuous solutions and the iteration to the elementary waves for homogeneous systems.
Chou, Shih-Wei, i 周世偉. "Global Existence and Time Asymptotic Stability of Solutions to Nonlinear Hyperbolic Systems of Balance Laws". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/17462722550360119327.
Pełny tekst źródła國立中央大學
數學系
101
We study the Cauchy problem for general nonlinear hyperbolic balance laws assuming time-oscillating fluxes and sources. Such nonlinear balance laws arise in, for instance, the nozzle flows of gas dynamics with time periodic ducts, traffic models incorporating lane changing effects model and shallow water equations with time-dependent river’s bottom. The global existence of weak solutions is established by a new version of the generalized Glimm method which incorporates asymptotic expansions of the fluxes and sources. We prove existence of weak solutions and demonstrate that they are indeed entropy solutions satisfying the entropy inequality. The approximate solutions of the perturbed Riemann problem, the building blocks of the generalized Glimm scheme, are constructed by a modified Lax method, and a generalized version of the wave interaction estimates are provided for the proof of stability. The consistency of the scheme is established by proving the weak convergence of the residuals and source terms, thereby extending the methods introduced in [12].