Gotowa bibliografia na temat „Hyperbolic balance laws”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hyperbolic balance laws”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hyperbolic balance laws"
Dafermos, Constantine. "Hyperbolic balance laws with relaxation". Discrete and Continuous Dynamical Systems 36, nr 8 (marzec 2016): 4271–85. http://dx.doi.org/10.3934/dcds.2016.36.4271.
Pełny tekst źródłaMiroshnikov, Alexey, i Konstantina Trivisa. "Stability and convergence of relaxation schemes to hyperbolic balance laws via a wave operator". Journal of Hyperbolic Differential Equations 12, nr 01 (marzec 2015): 189–219. http://dx.doi.org/10.1142/s0219891615500058.
Pełny tekst źródłaDAFERMOS, CONSTANTINE M. "N-WAVES IN HYPERBOLIC BALANCE LAWS". Journal of Hyperbolic Differential Equations 09, nr 02 (czerwiec 2012): 339–54. http://dx.doi.org/10.1142/s0219891612500117.
Pełny tekst źródłaDAFERMOS, CONSTANTINE M. "HYPERBOLIC SYSTEMS OF BALANCE LAWS WITH WEAK DISSIPATION II". Journal of Hyperbolic Differential Equations 10, nr 01 (marzec 2013): 173–79. http://dx.doi.org/10.1142/s0219891613500070.
Pełny tekst źródłaAbgrall, Rémi, Mauro Garavello, Mária Lukáčová-Medvid’ová i Konstantina Trivisa. "Hyperbolic Balance Laws: modeling, analysis, and numerics". Oberwolfach Reports 18, nr 1 (14.03.2022): 589–661. http://dx.doi.org/10.4171/owr/2021/11.
Pełny tekst źródłaCOLOMBO, RINALDO M., i ANDREA CORLI. "ON A CLASS OF HYPERBOLIC BALANCE LAWS". Journal of Hyperbolic Differential Equations 01, nr 04 (grudzień 2004): 725–45. http://dx.doi.org/10.1142/s0219891604000317.
Pełny tekst źródłaChristoforou, Cleopatra, i Konstantina Trivisa. "Sharp decay estimates for hyperbolic balance laws". Journal of Differential Equations 247, nr 2 (lipiec 2009): 401–23. http://dx.doi.org/10.1016/j.jde.2009.03.013.
Pełny tekst źródłaFalle, Samuel A., i Robin J. Williams. "Shock Structures Described by Hyperbolic Balance Laws". SIAM Journal on Applied Mathematics 79, nr 1 (styczeń 2019): 459–76. http://dx.doi.org/10.1137/18m1216390.
Pełny tekst źródłaSever, Michael. "Extensions of hyperbolic systems of balance laws". Continuum Mechanics and Thermodynamics 17, nr 6 (9.03.2006): 453–68. http://dx.doi.org/10.1007/s00161-006-0011-z.
Pełny tekst źródłaDAFERMOS, C. M. "HYPERBOLIC SYSTEMS OF BALANCE LAWS WITH WEAK DISSIPATION". Journal of Hyperbolic Differential Equations 03, nr 03 (wrzesień 2006): 505–27. http://dx.doi.org/10.1142/s0219891606000884.
Pełny tekst źródłaRozprawy doktorskie na temat "Hyperbolic balance laws"
Sen, Chhanda. "Entropy stable numerical schemes for hyperbolic balance laws". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8135.
Pełny tekst źródłaEhrt, Julia [Verfasser]. "Cascades of heteroclinic connections in hyperbolic balance laws / Julia Ehrt". Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.V, 2010. http://d-nb.info/1042738963/34.
Pełny tekst źródłaEhrt, Julia [Verfasser]. "Cascades of heteroclinic connections in hyperbolic balance laws / Julia Michael Ehrt". Berlin : Freie Universität Berlin, 2010. http://nbn-resolving.de/urn:nbn:de:kobv:188-fudissthesis000000015791-0.
Pełny tekst źródłaWeldegiyorgis, Gediyon Yemane. "Numerical stabilization with boundary controls for hyperbolic systems of balance laws". Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/60870.
Pełny tekst źródłaDissertation (MSc)--University of Pretoria, 2016.
Mathematics and Applied Mathematics
MSc
Unrestricted
ROSSI, ELENA. "Balance Laws: Non Local Mixed Systems and IBVPs". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/103090.
Pełny tekst źródłaMantri, Yogiraj Verfasser], Sebastian [Akademischer Betreuer] Noelle i Michael [Akademischer Betreuer] [Herty. "Computing near-equilibrium solutions for hyperbolic balance laws on networks / Yogiraj Mantri ; Sebastian Noelle, Michael Herty". Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1228433038/34.
Pełny tekst źródłaGerster, Stephan [Verfasser], Michael [Akademischer Betreuer] Herty, Martin [Akademischer Betreuer] Frank i Simone [Akademischer Betreuer] Göttlich. "Stabilization and uncertainty quantification for systems of hyperbolic balance laws / Stephan Gerster ; Michael Herty, Martin Frank, Simone Göttlich". Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1216638136/34.
Pełny tekst źródłaSchmitt, Johann Michael [Verfasser]. "Optimal Control of Initial-Boundary Value Problems for Hyperbolic Balance Laws with Switching Controls and State Constraints / Johann Michael Schmitt". München : Verlag Dr. Hut, 2019. http://d-nb.info/1188516450/34.
Pełny tekst źródłaTang, Ying. "Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT054/document.
Pełny tekst źródłaSystems modeled by partial differential equations (PDEs) with infinite dimensional dynamics are relevant for a wide range of physical networks. The control and stability analysis of such systems become a challenge area. Singularly perturbed systems, containing multiple time scales, often occur naturally in physical systems due to the presence of small parasitic parameters, typically small time constants, masses, inductances, moments of inertia. Singular perturbation was introduced in control engineering in late $1960$s, its assimilation in control theory has rapidly developed and has become a tool for analysis and design of control systems. Singular perturbation is a way of neglecting the fast transition and considering them in a separate fast time scale. The present thesis is concerned with a class of linear hyperbolic systems with multiple time scales modeled by a small perturbation parameter. Firstly we study a class of singularly perturbed linear hyperbolic systems of conservation laws. Since the system contains two time scales, by setting the perturbation parameter to zero, the two subsystems, namely the reduced subsystem and the boundary-layer subsystem, are formally computed. The stability of the full system implies the stability of both subsystems. However a counterexample is used to illustrate that the stability of the two subsystems is not enough to guarantee the full system's stability. This shows a major difference with what is well known for linear finite dimensional systems. Moreover, under certain conditions, the Tikhonov approximation for such system is achieved by Lyapunov method. Precisely, the solution of the slow dynamics of the full system is approximated by the solution of the reduced subsystem for sufficiently small perturbation parameter. Secondly the Tikhonov theorem is established for singularly perturbed linear hyperbolic systems of balance laws where the transport velocities and source terms are both dependent on the perturbation parameter as well as the boundary conditions. Under the assumptions on the continuity for such terms and under the stability condition, the estimate of the error between the slow dynamics of the full system and the reduced subsystem is the order of the perturbation parameter. Thirdly, we consider singularly perturbed coupled ordinary differential equation ODE-PDE systems. The stability of both subsystems implies that of the full system where the perturbation parameter is introduced into the dynamics of the PDE system. On the other hand, this is not true for system where the perturbation parameter is presented to the ODE. The Tikhonov theorem for such coupled ODE-PDE systems is proved by Lyapunov technique. Finally, the boundary control synthesis is achieved based on singular perturbation method. The reduced subsystem is convergent in finite time. Boundary control design to different applications are used to illustrate the main results of this work
MARCELLINI, FRANCESCA. "Conservation laws in gas dynamics and traffic flow". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7487.
Pełny tekst źródłaKsiążki na temat "Hyperbolic balance laws"
Bressan, Alberto, Denis Serre, Mark Williams i Kevin Zumbrun. Hyperbolic Systems of Balance Laws. Redaktor Pierangelo Marcati. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72187-1.
Pełny tekst źródłaBartecki, Krzysztof. Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27501-7.
Pełny tekst źródłaAlbi, Giacomo, Walter Boscheri i Mattia Zanella, red. Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29875-2.
Pełny tekst źródła1956-, Bressan Alberto, Marcati P. A i Centro internazionale matematico estivo, red. Hyperbolic systems of balance laws: Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 14-21, 2003. Berlin: Springer, 2007.
Znajdź pełny tekst źródłaBartecki, Krzysztof. Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws. Springer, 2018.
Znajdź pełny tekst źródłaBartecki, Krzysztof. Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws. Springer, 2015.
Znajdź pełny tekst źródłaBartecki, Krzysztof. Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws. Springer London, Limited, 2016.
Znajdź pełny tekst źródłaBressan, Alberto, Denis Serre, Kevin Zumbrun, Mark Williams i Pierangelo Marcati. Hyperbolic Systems of Balance Laws: Lectures Given at the C. I. M. E. Summer School Held in Cetraro, Italy, July 14-21 2003. Springer London, Limited, 2007.
Znajdź pełny tekst źródłaNonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: And Well-Balanced Schemes for Sources (Frontiers in Mathematics). Birkhäuser Basel, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Hyperbolic balance laws"
Bartecki, Krzysztof. "Hyperbolic Systems of Balance Laws". W Studies in Systems, Decision and Control, 7–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27501-7_2.
Pełny tekst źródłaDafermos, Constantine M. "Hyperbolic Systems of Balance Laws". W Grundlehren der mathematischen Wissenschaften, 53–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49451-6_3.
Pełny tekst źródłaDafermos, Constantine M. "Hyperbolic Systems of Balance Laws". W Grundlehren der mathematischen Wissenschaften, 37–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22019-1_3.
Pełny tekst źródłaDafermos, Constantine M. "Hyperbolic Systems of Balance Laws". W Grundlehren der mathematischen Wissenschaften, 53–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04048-1_3.
Pełny tekst źródłaBastin, Georges, i Jean-Michel Coron. "Hyperbolic Systems of Balance Laws". W Stability and Boundary Stabilization of 1-D Hyperbolic Systems, 1–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32062-5_1.
Pełny tekst źródłaRusso, Giovanni. "Central Schemes for Balance Laws". W Hyperbolic Problems: Theory, Numerics, Applications, 821–29. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8372-6_35.
Pełny tekst źródłaMeister, Andreas, i Jens Struckmeier. "Central Schemes and Systems of Balance Laws". W Hyperbolic Partial Differential Equations, 59–114. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80227-9_2.
Pełny tekst źródłaChristoforou, Cleopatra. "On Hyperbolic Balance Laws and Applications". W Innovative Algorithms and Analysis, 141–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49262-9_5.
Pełny tekst źródłaGonzález de Alaiza Martínez, Pedro, i María Elena Vázquez-Cendón. "Operator-Splitting on Hyperbolic Balance Laws". W Advances in Differential Equations and Applications, 279–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06953-1_27.
Pełny tekst źródłaLiotta, Salvatore Fabio, Vittorio Romano i Giovanni Russo. "Central Schemes for Systems of Balance Laws". W Hyperbolic Problems: Theory, Numerics, Applications, 651–60. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8724-3_16.
Pełny tekst źródłaStreszczenia konferencji na temat "Hyperbolic balance laws"
Kitsos, Constantinos, Gildas Besancon i Christophe Prieur. "High-Gain Observer Design for a Class of Hyperbolic Systems of Balance Laws". W 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619291.
Pełny tekst źródłaAloev, Rakhmatillo, i Dilfuza Nematova. "Lyapunov numerical stability of a hyperbolic system of linear balance laws with inhomogeneous coefficients". W INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0056862.
Pełny tekst źródłaBartecki, Krzysztof. "Computation of transfer function matrices for 2×2 strongly coupled hyperbolic systems of balance laws". W 2013 Conference on Control and Fault-Tolerant Systems (SysTol). IEEE, 2013. http://dx.doi.org/10.1109/systol.2013.6693813.
Pełny tekst źródłaBastin, Georges, Jean-Michel Coron i Brigitte d'Andrea-Novel. "Boundary feedback control and Lyapunov stability analysis for physical networks of 2×2 hyperbolic balance laws". W 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4738857.
Pełny tekst źródłaNourgaliev, Robert, Nam Dinh i Theo Theofanous. "A Characteristics-Based Approach to the Numerical Solution of the Two-Fluid Model". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45551.
Pełny tekst źródłaBertaglia, Giulia. "Augmented fluid-structure interaction systems for viscoelastic pipelines and blood vessels". W VI ECCOMAS Young Investigators Conference. València: Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.13450.
Pełny tekst źródła