Artykuły w czasopismach na temat „HYPER SPECTRAL IMAGE CLASSIFICATION”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „HYPER SPECTRAL IMAGE CLASSIFICATION”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
HUANG Hong, 黄. 鸿., 陈美利 CHEN Mei-li, 段宇乐 DUAN Yu-le i 石光耀 SHI Guang-yao. "Hyper-spectral image classification using spatial-spectral manifold reconstruction". Optics and Precision Engineering 26, nr 7 (2018): 1827–36. http://dx.doi.org/10.3788/ope.20182607.1827.
Pełny tekst źródłaJavadi, P. "USE SATELLITE IMAGES AND IMPROVE THE ACCURACY OF HYPERSPECTRAL IMAGE WITH THE CLASSIFICATION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1-W5 (11.12.2015): 343–49. http://dx.doi.org/10.5194/isprsarchives-xl-1-w5-343-2015.
Pełny tekst źródłaAlhayani, Bilal, i Haci Ilhan. "Hyper spectral Image classification using Dimensionality Reduction Techniques". IJIREEICE 5, nr 4 (15.04.2017): 71–74. http://dx.doi.org/10.17148/ijireeice.2017.5414.
Pełny tekst źródłaSharif, I., i S. Khare. "Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8 (28.11.2014): 937–41. http://dx.doi.org/10.5194/isprsarchives-xl-8-937-2014.
Pełny tekst źródłaShanmugapriya, G., i . "An Efficient Spectral Spatial Classification for Hyper Spectral Images". International Journal of Engineering & Technology 7, nr 3.12 (20.07.2018): 1050. http://dx.doi.org/10.14419/ijet.v7i3.12.17630.
Pełny tekst źródłaBanit', Ibtissam, N. A. ouagua, Mounir Ait Kerroum, Ahmed Hammouch i Driss Aboutajdine. "Band selection by mutual information for hyper-spectral image classification". International Journal of Advanced Intelligence Paradigms 8, nr 1 (2016): 98. http://dx.doi.org/10.1504/ijaip.2016.074791.
Pełny tekst źródłaTANG Yan-hui, 唐艳慧, 赵鹏 ZHAO Peng i 王承琨 WANG Cheng-kun. "Texture classification algorithm of wood hyper-spectral image based on multi-fractal spectra". Chinese Journal of Liquid Crystals and Displays 34, nr 12 (2019): 1182–90. http://dx.doi.org/10.3788/yjyxs20193412.1182.
Pełny tekst źródłaLavanya, K., R. Jaya Subalakshmi, T. Tamizharasi, Lydia Jane i Akila Victor. "Unsupervised Unmixing and Segmentation of Hyper Spectral Images Accounting for Soil Fertility". Scalable Computing: Practice and Experience 23, nr 4 (23.12.2022): 291–301. http://dx.doi.org/10.12694/scpe.v23i4.2031.
Pełny tekst źródłaZhang, Tianxiang, Wenxuan Wang, Jing Wang, Yuanxiu Cai, Zhifang Yang i Jiangyun Li. "Hyper-LGNet: Coupling Local and Global Features for Hyperspectral Image Classification". Remote Sensing 14, nr 20 (20.10.2022): 5251. http://dx.doi.org/10.3390/rs14205251.
Pełny tekst źródłaLi, Runya, i Shenglian Li. "Multimedia Image Data Analysis Based on KNN Algorithm". Computational Intelligence and Neuroscience 2022 (12.04.2022): 1–8. http://dx.doi.org/10.1155/2022/7963603.
Pełny tekst źródłaMunishamaiaha, Kavitha, Senthil Kumar Kannan, DhilipKumar Venkatesan, Michał Jasiński, Filip Novak, Radomir Gono i Zbigniew Leonowicz. "Hyperspectral Image Classification with Deep CNN Using an Enhanced Elephant Herding Optimization for Updating Hyper-Parameters". Electronics 12, nr 5 (27.02.2023): 1157. http://dx.doi.org/10.3390/electronics12051157.
Pełny tekst źródłaKavitha, K., i Dr S. Arivazhagan. "A Novel Feature Derivation Technique for SVM based Hyper Spectral Image Classification". International Journal of Computer Applications 1, nr 15 (25.02.2010): 27–34. http://dx.doi.org/10.5120/327-496.
Pełny tekst źródłaSegonne, Charlotte, Nathalie Huret, Sébastien Payan, Mathieu Gouhier i Valéry Catoire. "A Spectra Classification Methodology of Hyperspectral Infrared Images for Near Real-Time Estimation of the SO2 Emission Flux from Mount Etna with LARA Radiative Transfer Retrieval Model". Remote Sensing 12, nr 24 (16.12.2020): 4107. http://dx.doi.org/10.3390/rs12244107.
Pełny tekst źródłaMr. B. Naga Rajesh. "Effective Morphological Transformation and Sub-pixel Classification of Clustered Images". International Journal of New Practices in Management and Engineering 8, nr 01 (31.03.2019): 08–14. http://dx.doi.org/10.17762/ijnpme.v8i01.74.
Pełny tekst źródłaArumuga Maria Devi, T., i P. Darwin. "Hyper Spectral Fruit Image Classification for Deep Learning Approaches and Neural Network Techniques". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 30, nr 03 (czerwiec 2022): 357–83. http://dx.doi.org/10.1142/s0218488522400116.
Pełny tekst źródłaHohmann, Martin, Damaris Hecht, Benjamin Lengenfelder, Moritz Späth, Florian Klämpfl i Michael Schmidt. "Proof of Principle for Direct Reconstruction of Qualitative Depth Information from Turbid Media by a Single Hyper Spectral Image". Sensors 21, nr 8 (19.04.2021): 2860. http://dx.doi.org/10.3390/s21082860.
Pełny tekst źródłainto, Mur, i Nur Rochmah DPA. "Classification of Hyper spectral Image Using Support Vector Machine and Marker-Controlled Watershed". International Journal of Computer Trends and Technology 27, nr 2 (25.09.2015): 70–75. http://dx.doi.org/10.14445/22312803/ijctt-v27p112.
Pełny tekst źródłaLiu, Q. J., L. H. Jing, L. M. Wang i Q. Z. Lin. "A Method of Particle Swarm Optimized SVM Hyper-spectral Remote Sensing Image Classification". IOP Conference Series: Earth and Environmental Science 17 (18.03.2014): 012205. http://dx.doi.org/10.1088/1755-1315/17/1/012205.
Pełny tekst źródłaMarwaha, R., A. Kumar, P. L. N. Raju i Y. V. N. Krishna Murthy. "Target detection algorithm for airborne thermal hyperspectral data". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8 (28.11.2014): 827–32. http://dx.doi.org/10.5194/isprsarchives-xl-8-827-2014.
Pełny tekst źródłaGiulietti, Nicola, Silvia Discepolo, Paolo Castellini i Milena Martarelli. "Correction of Substrate Spectral Distortion in Hyper-Spectral Imaging by Neural Network for Blood Stain Characterization". Sensors 22, nr 19 (27.09.2022): 7311. http://dx.doi.org/10.3390/s22197311.
Pełny tekst źródłaKarthikeyan, A., S. Pavithra i P. M. Anu. "Detection and Classification of 2D and 3D Hyper Spectral Image using Enhanced Harris Corner Detector". Scalable Computing: Practice and Experience 21, nr 1 (19.03.2020): 93–100. http://dx.doi.org/10.12694/scpe.v21i1.1625.
Pełny tekst źródłaAwad, Mohamad M., i Marco Lauteri. "Self-Organizing Deep Learning (SO-UNet)—A Novel Framework to Classify Urban and Peri-Urban Forests". Sustainability 13, nr 10 (16.05.2021): 5548. http://dx.doi.org/10.3390/su13105548.
Pełny tekst źródłaXie, Jiaxing, Jiajun Hua, Shaonan Chen, Peiwen Wu, Peng Gao, Daozong Sun, Zhendong Lyu, Shilei Lyu, Xiuyun Xue i Jianqiang Lu. "HyperSFormer: A Transformer-Based End-to-End Hyperspectral Image Classification Method for Crop Classification". Remote Sensing 15, nr 14 (11.07.2023): 3491. http://dx.doi.org/10.3390/rs15143491.
Pełny tekst źródłaShaikh, Muhammad Saad, Keyvan Jaferzadeh, Benny Thörnberg i Johan Casselgren. "Calibration of a Hyper-Spectral Imaging System Using a Low-Cost Reference". Sensors 21, nr 11 (27.05.2021): 3738. http://dx.doi.org/10.3390/s21113738.
Pełny tekst źródłaHobbs, Steven, Andrew Lambert, Michael J. Ryan, David J. Paull i John Haythorpe. "Appraisal of Low-Cost Pushbroom Hyper-Spectral Sensor Systems for Material Classification in Reflectance". Sensors 21, nr 13 (27.06.2021): 4398. http://dx.doi.org/10.3390/s21134398.
Pełny tekst źródłaDyson, Jack, Adriano Mancini, Emanuele Frontoni i Primo Zingaretti. "Deep Learning for Soil and Crop Segmentation from Remotely Sensed Data". Remote Sensing 11, nr 16 (9.08.2019): 1859. http://dx.doi.org/10.3390/rs11161859.
Pełny tekst źródłaPelletier, Charlotte, Geoffrey Webb i François Petitjean. "Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series". Remote Sensing 11, nr 5 (4.03.2019): 523. http://dx.doi.org/10.3390/rs11050523.
Pełny tekst źródłaFan, Yuhai, Yuiqing Wan, Hui Wang, Xingke Yang, Min Liang, Chunjuan Pan, Shaopeng Zhang, Wenbo Wang i Furong Tan. "Application of an airborne hyper-spectral survey system CASI/SASI in the gold-silver-lead-zinc ore district of Huaniushan, Gansu, China". Geologia Croatica 74, nr 1 (28.02.2021): 73–83. http://dx.doi.org/10.4154/gc.2021.04.
Pełny tekst źródłaCoppo, Peter, Leandro Chiarantini i Luciano Alparone. "End-to-End Image Simulator for Optical Imaging Systems: Equations and Simulation Examples". Advances in Optical Technologies 2013 (15.01.2013): 1–23. http://dx.doi.org/10.1155/2013/295950.
Pełny tekst źródłaSingh, Suraj Kumar, Shruti Kanga i Sudhanshu. "Assessment of Geospatial Approaches Used for Classification of Crops". International Journal of Mathematical, Engineering and Management Sciences 3, nr 3 (1.09.2018): 271–79. http://dx.doi.org/10.33889/ijmems.2018.3.3-019.
Pełny tekst źródłaAghighi, H., J. Trinder, S. Lim i Y. Tarabalka. "Improved adaptive Markov random field based super-resolution mapping for mangrove tree identification". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-8 (27.11.2014): 61–68. http://dx.doi.org/10.5194/isprsannals-ii-8-61-2014.
Pełny tekst źródłaHuang, Yuancheng, Liangpei Zhang, Pingxiang Li i Yanfei Zhong. "High-resolution hyper-spectral image classification with parts-based feature and morphology profile in urban area". Geo-spatial Information Science 13, nr 2 (styczeń 2010): 111–22. http://dx.doi.org/10.1007/s11806-010-0004-8.
Pełny tekst źródłaWan, Lei, Ma i Cheng. "The Analysis on Similarity of Spectrum Analysis of Landslide and Bareland through Hyper-Spectrum Image Bands". Water 11, nr 11 (17.11.2019): 2414. http://dx.doi.org/10.3390/w11112414.
Pełny tekst źródłaLi, Huo-Yuan, i Yong-Feng Qi. "A Hyper spectral Images Classification Method Based on Maximum Scatter Discriminant Analysis". ITM Web of Conferences 7 (2016): 02007. http://dx.doi.org/10.1051/itmconf/20160702007.
Pełny tekst źródłaVoulodimos, A., K. Fokeas, N. Doulamis, A. Doulamis i K. Makantasis. "NOISE-TOLERANT HYPERSPECTRAL IMAGE CLASSIFICATION USING DISCRETE COSINE TRANSFORM AND CONVOLUTIONAL NEURAL NETWORKS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020 (14.08.2020): 1281–87. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2020-1281-2020.
Pełny tekst źródłaDai, Xiaoai, Xuwei He, Shouheng Guo, Senhao Liu, Fujiang Ji i Huihua Ruan. "Research on hyper-spectral remote sensing image classification by applying stacked de-noising auto-encoders neural network". Multimedia Tools and Applications 80, nr 14 (15.03.2021): 21219–39. http://dx.doi.org/10.1007/s11042-021-10735-0.
Pełny tekst źródłaGopal, Narendra, i Sivakumar D. "DIMENSIONALITY REDUCTION BASED CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS DATASET GENERATION". ICTACT Journal on Image and Video Processing 13, nr 01 (1.08.2022): 2786–90. http://dx.doi.org/10.21917/ijivp.2022.0396.
Pełny tekst źródłaS, Shitharth, Hariprasath Manoharan, Abdulrhman M. Alshareef, Ayman Yafoz, Hassan Alkhiri i Olfat M. Mirza. "Hyper spectral image classifications for monitoring harvests in agriculture using fly optimization algorithm". Computers and Electrical Engineering 103 (październik 2022): 108400. http://dx.doi.org/10.1016/j.compeleceng.2022.108400.
Pełny tekst źródłaJinglei, Tang, Miao Ronghui, Zhang Zhiyong, Xin Jing i Wang Dong. "Distance-based separability criterion of ROI in classification of farmland hyper-spectral images". International Journal of Agricultural and Biological Engineering 10, nr 5 (2017): 177–85. http://dx.doi.org/10.25165/j.ijabe.20171005.2264.
Pełny tekst źródłaVinokurov, V. O., I. A. Matveeva, Y. A. Khristoforova, O. O. Myakinin, I. A. Bratchenko, L. A. Bratchenko, A. A. Moryatov i in. "Neural network classifier of hyperspectral images of skin pathologies". Computer Optics 45, nr 6 (listopad 2021): 879–86. http://dx.doi.org/10.18287/2412-6179-co-832.
Pełny tekst źródłaJamali, A. "A FIT-FOR-PURPOSE ALGORITHM FOR ENVIRONMENTAL MONITORING BASED ON MAXIMUM LIKELIHOOD, SUPPORT VECTOR MACHINE AND RANDOM FOREST". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W7 (1.03.2019): 25–32. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w7-25-2019.
Pełny tekst źródłaMohammed, Bakhtyar Ahmed, i Muzhir Shaban Al-Ani. "Review Research of Medical Image Analysis Using Deep Learning". UHD Journal of Science and Technology 4, nr 2 (27.08.2020): 75. http://dx.doi.org/10.21928/uhdjst.v4n2y2020.pp75-90.
Pełny tekst źródłaJohn, C. M., i N. Kavya. "Integration of multispectral satellite and hyperspectral field data for aquatic macrophyte studies". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8 (28.11.2014): 581–88. http://dx.doi.org/10.5194/isprsarchives-xl-8-581-2014.
Pełny tekst źródłaWang, Wenxuan, Leiming Liu, Tianxiang Zhang, Jiachen Shen, Jing Wang i Jiangyun Li. "Hyper-ES2T: Efficient Spatial–Spectral Transformer for the classification of hyperspectral remote sensing images". International Journal of Applied Earth Observation and Geoinformation 113 (wrzesień 2022): 103005. http://dx.doi.org/10.1016/j.jag.2022.103005.
Pełny tekst źródłaHonkavaara, E., R. Näsi, R. Oliveira, N. Viljanen, J. Suomalainen, E. Khoramshahi, T. Hakala i in. "USING MULTITEMPORAL HYPER- AND MULTISPECTRAL UAV IMAGING FOR DETECTING BARK BEETLE INFESTATION ON NORWAY SPRUCE". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020 (21.08.2020): 429–34. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2020-429-2020.
Pełny tekst źródłaMalinee, Rachane, Dimitris Stratoulias i Narissara Nuthammachot. "Detection of Oil Palm Disease in Plantations in Krabi Province, Thailand with High Spatial Resolution Satellite Imagery". Agriculture 11, nr 3 (16.03.2021): 251. http://dx.doi.org/10.3390/agriculture11030251.
Pełny tekst źródłaNotesco, Weksler i Ben-Dor. "Mineral Classification of Soils Using Hyperspectral Longwave Infrared (LWIR) Ground-Based Data". Remote Sensing 11, nr 12 (16.06.2019): 1429. http://dx.doi.org/10.3390/rs11121429.
Pełny tekst źródłaIdoughi, Ramzi, Thomas H. G. Vidal, Pierre-Yves Foucher, Marc-André Gagnon i Xavier Briottet. "Background Radiance Estimation for Gas Plume Quantification for Airborne Hyperspectral Thermal Imaging". Journal of Spectroscopy 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/5428762.
Pełny tekst źródłaGörlich, Florian, Elias Marks, Anne-Katrin Mahlein, Kathrin König, Philipp Lottes i Cyrill Stachniss. "UAV-Based Classification of Cercospora Leaf Spot Using RGB Images". Drones 5, nr 2 (5.05.2021): 34. http://dx.doi.org/10.3390/drones5020034.
Pełny tekst źródłaPark, Keunho, Young ki Hong, Gook hwan Kim i Joonwhoan Lee. "Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network". Computers and Electronics in Agriculture 148 (maj 2018): 179–87. http://dx.doi.org/10.1016/j.compag.2018.02.025.
Pełny tekst źródła