Artykuły w czasopismach na temat „Hydrostatic models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hydrostatic models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hasegawa, Tatsuhiko. "Hydrostatic models of Bok globules." Astrophysics and Space Science 119, no. 1 (1986): 151–54. http://dx.doi.org/10.1007/bf00648835.
Pełny tekst źródłaWhite, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth. "Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic." Quarterly Journal of the Royal Meteorological Society 131, no. 609 (2005): 2081–107. http://dx.doi.org/10.1256/qj.04.49.
Pełny tekst źródłaGibbon, J. D., and D. D. Holm. "Extreme events in solutions of hydrostatic and non-hydrostatic climate models." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1939 (2011): 1156–79. http://dx.doi.org/10.1098/rsta.2010.0244.
Pełny tekst źródłaDeupree, Robert G. "Multidimensional Hydrodynamic and Hydrostatic Stellar Models." Symposium - International Astronomical Union 215 (2004): 378–87. http://dx.doi.org/10.1017/s0074180900195919.
Pełny tekst źródłaDuffy, Dean G. "Hydrostatic Adjustment in Nonhydrostatic, Compressible Mesoscale Models." Monthly Weather Review 125, no. 12 (1997): 3357–67. http://dx.doi.org/10.1175/1520-0493(1997)125<3357:haincm>2.0.co;2.
Pełny tekst źródłaAscasibar, Y., A. C. Obreja, and A. I. Díaz. "Hydrostatic photoionization models of the Orion Bar." Monthly Notices of the Royal Astronomical Society 416, no. 2 (2011): 1546–55. http://dx.doi.org/10.1111/j.1365-2966.2011.19151.x.
Pełny tekst źródłaZingale, M., L. J. Dursi, J. ZuHone, et al. "Mapping Initial Hydrostatic Models in Godunov Codes." Astrophysical Journal Supplement Series 143, no. 2 (2002): 539–65. http://dx.doi.org/10.1086/342754.
Pełny tekst źródłaGuerra, Jorge E., and Paul A. Ullrich. "A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models." Geoscientific Model Development 9, no. 5 (2016): 2007–29. http://dx.doi.org/10.5194/gmd-9-2007-2016.
Pełny tekst źródłaSavoulides, N., K. S. Breuer, S. Jacobson, and F. F. Ehrich. "Low-Order Models for Very Short Hybrid Gas Bearings." Journal of Tribology 123, no. 2 (2000): 368–75. http://dx.doi.org/10.1115/1.1308000.
Pełny tekst źródłaKållberg, P., and A. Montani. "A case study carried out with two different NWP systems." Natural Hazards and Earth System Sciences 6, no. 5 (2006): 755–60. http://dx.doi.org/10.5194/nhess-6-755-2006.
Pełny tekst źródłaSeroussi, H., M. Morlighem, E. Larour, E. Rignot, and A. Khazendar. "Hydrostatic grounding line parameterization in ice sheet models." Cryosphere 8, no. 6 (2014): 2075–87. http://dx.doi.org/10.5194/tc-8-2075-2014.
Pełny tekst źródłaSeroussi, H., M. Morlighem, E. Larour, E. Rignot, and A. Khazendar. "Hydrostatic grounding line parameterization in ice sheet models." Cryosphere Discussions 8, no. 3 (2014): 3335–65. http://dx.doi.org/10.5194/tcd-8-3335-2014.
Pełny tekst źródłavan Putten, T., A. L. Watts, C. R. D'Angelo, M. G. Baring, and C. Kouveliotou. "Models of hydrostatic magnetar atmospheres at high luminosities." Monthly Notices of the Royal Astronomical Society 434, no. 2 (2013): 1398–410. http://dx.doi.org/10.1093/mnras/stt1093.
Pełny tekst źródłaKeilegavlen, Eirik, та Jarle Berntsen. "Non-hydrostatic pressure in σ-coordinate ocean models". Ocean Modelling 28, № 4 (2009): 240–49. http://dx.doi.org/10.1016/j.ocemod.2009.02.006.
Pełny tekst źródłaCarroll, John J., Luis R-Mendez-Nu�ez, and Saffet Tanrikulu. "Accurate pressure gradient calculations in hydrostatic atmospheric models." Boundary-Layer Meteorology 41, no. 1-4 (1987): 149–69. http://dx.doi.org/10.1007/bf00120437.
Pełny tekst źródłaRõõm, Rein, Pedro M. A. Miranda, and Alan J. Thorpe. "Filtered non-hydrostatic models in pressure-related coordinates." Quarterly Journal of the Royal Meteorological Society 127, no. 574 (2001): 1277–92. http://dx.doi.org/10.1002/qj.49712757408.
Pełny tekst źródłaWedi, Nils P., and Piotr K. Smolarkiewicz. "A framework for testing global non-hydrostatic models." Quarterly Journal of the Royal Meteorological Society 135, no. 639 (2009): 469–84. http://dx.doi.org/10.1002/qj.377.
Pełny tekst źródłaFernández-Nieto, E. D., J. Garres-Díaz, and P. Vigneaux. "Multilayer models for hydrostatic Herschel-Bulkley viscoplastic flows." Computers & Mathematics with Applications 139 (June 2023): 99–117. http://dx.doi.org/10.1016/j.camwa.2023.03.018.
Pełny tekst źródłaJourdon, Anthony, and Dave A. May. "An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models." Solid Earth 13, no. 6 (2022): 1107–25. http://dx.doi.org/10.5194/se-13-1107-2022.
Pełny tekst źródłaKuell, Volker, and Andreas Bott. "A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models." Meteorologische Zeitschrift 17, no. 6 (2008): 775–83. http://dx.doi.org/10.1127/0941-2948/2008/0342.
Pełny tekst źródłaXu, Xiao Qiu, Jun Peng Shao, Xiao Dong Yang, Yan Qin Zhang, Xiao Dong Yu, and Bing Wei Gao. "Simulation on Multi-Oil-Cavity and Multi-Oil-Pad Hydrostatic Bearings." Applied Mechanics and Materials 274 (January 2013): 274–77. http://dx.doi.org/10.4028/www.scientific.net/amm.274.274.
Pełny tekst źródłaOkahata, Go, Shigeki Okuyama, and Akinori Yui. "Numerical Study on Constant-Flow Hydrostatic Water Bearing for a Machine-Tool Table." Advanced Materials Research 325 (August 2011): 357–62. http://dx.doi.org/10.4028/www.scientific.net/amr.325.357.
Pełny tekst źródłaPoniatowski, L. G., J. O. Sundqvist, N. D. Kee, et al. "Dynamically inflated wind models of classical Wolf-Rayet stars." Astronomy & Astrophysics 647 (March 2021): A151. http://dx.doi.org/10.1051/0004-6361/202039595.
Pełny tekst źródłaJang, Jihyeon, and Song-You Hong. "Comparison of Simulated Precipitation over East Asia in Two Regional Models with Hydrostatic and Nonhydrostatic Dynamical Cores." Monthly Weather Review 144, no. 10 (2016): 3579–90. http://dx.doi.org/10.1175/mwr-d-15-0428.1.
Pełny tekst źródłaJiang, Gui Yun, Yong Qin Wang, and Xin Chun Yan. "Study on Throttle Methods for Hydrostatic Bearing." Applied Mechanics and Materials 373-375 (August 2013): 2119–23. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.2119.
Pełny tekst źródłaKlein, Rupert, and Tommaso Benacchio. "A Doubly Blended Model for Multiscale Atmospheric Dynamics." Journal of the Atmospheric Sciences 73, no. 3 (2016): 1179–86. http://dx.doi.org/10.1175/jas-d-15-0323.1.
Pełny tekst źródłaBehrens, Bernd Arno, Thomas Hagen, Andreas Klassen, Julian Knigge, Jens Mielke, and Insa Pfeiffer. "Forging of Aluminium Components under a Superimposed Hydrostatic Pressure to Induce Local Strain Hardening." Advanced Materials Research 137 (October 2010): 191–217. http://dx.doi.org/10.4028/www.scientific.net/amr.137.191.
Pełny tekst źródłaLu, Huaiqing, and Zhuxin Tian. "Investigation of the Static Performance of Hydrostatic Thrust Bearings Considering Non-Gaussian Surface Topography." Lubricants 11, no. 6 (2023): 267. http://dx.doi.org/10.3390/lubricants11060267.
Pełny tekst źródłaHammond, Lloyd, and Raphael Grzebieta. "The Requirement for Hydrostatic Initialisation in LS-DYNA/USA Finite Element Models." Shock and Vibration 7, no. 2 (2000): 57–65. http://dx.doi.org/10.1155/2000/972928.
Pełny tekst źródłaBai, Yefei, and Kwok Fai Cheung. "Dispersion and kinematics of multi-layer non-hydrostatic models." Ocean Modelling 92 (August 2015): 11–27. http://dx.doi.org/10.1016/j.ocemod.2015.05.005.
Pełny tekst źródłaSigut, T. A. A., M. A. McGill, and C. E. Jones. "BE STAR DISK MODELS IN CONSISTENT VERTICAL HYDROSTATIC EQUILIBRIUM." Astrophysical Journal 699, no. 2 (2009): 1973–81. http://dx.doi.org/10.1088/0004-637x/699/2/1973.
Pełny tekst źródłaBourchtein, Andrei, Ludmila Bourchtein, and Vladimir Kadychnikov. "Correctness of the vertical discretization in hydrostatic atmospheric models." Quarterly Journal of the Royal Meteorological Society 135, no. 638 (2008): 263–76. http://dx.doi.org/10.1002/qj.336.
Pełny tekst źródłaLucas, Carine, Madalina Petcu, and Antoine Rousseau. "Quasi-hydrostatic primitive equations for ocean global circulation models." Chinese Annals of Mathematics, Series B 31, no. 6 (2010): 939–52. http://dx.doi.org/10.1007/s11401-010-0611-6.
Pełny tekst źródłaShi, Fengyan, Gangfeng Ma, James T. Kirby, and Tian-Jian Tom Hsu. "APPLICATION OF A TVD SOLVER IN A SUITE OF COASTAL ENGINEERING MODELS." Coastal Engineering Proceedings 1, no. 33 (2012): 31. http://dx.doi.org/10.9753/icce.v33.currents.31.
Pełny tekst źródłaTaqieddin, Ziad N., and George Z. Voyiadjis. "Studying the effect of a hydrostatic stress/strain reduction factor on damage mechanics of concrete materials." Journal of the Mechanical Behavior of Materials 22, no. 5-6 (2013): 149–59. http://dx.doi.org/10.1515/jmbm-2013-0022.
Pełny tekst źródłaEttori, S., V. Ghirardini, D. Eckert, et al. "Hydrostatic mass profiles in X-COP galaxy clusters." Astronomy & Astrophysics 621 (January 2019): A39. http://dx.doi.org/10.1051/0004-6361/201833323.
Pełny tekst źródłaLiu, Lei, Xu Guang Wang, Yi Yang, and Guo Hua Wang. "Experimental Method Study on Emulsion Explosives under Hydrostatic Pressure in Models Blasting." Advanced Materials Research 524-527 (May 2012): 569–74. http://dx.doi.org/10.4028/www.scientific.net/amr.524-527.569.
Pełny tekst źródłaNakano, Masuo, Akiyoshi Wada, Masahiro Sawada, et al. "Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results." Geoscientific Model Development 10, no. 3 (2017): 1363–81. http://dx.doi.org/10.5194/gmd-10-1363-2017.
Pełny tekst źródłaNIMURA, Masaki, Koji KAWASAKI, Tomokazu MURAKAMI, Shinya SHIMOKAWA, Satoshi IIZUKA, and Shuzo NISHIDA. "APPLICABILITY OF HYDROSTATIC / NON-HYDROSTATIC MODELS OF TSUNAMI SIMULATOR “T-STOC” TO STORM SURGE -INDUCED INANDATION ANALYSIS." Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 76, no. 2 (2020): I_115—I_120. http://dx.doi.org/10.2208/kaigan.76.2_i_115.
Pełny tekst źródłaHu, Jiang, and Suhua Wu. "Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks." Structural Health Monitoring 18, no. 2 (2018): 546–62. http://dx.doi.org/10.1177/1475921718760309.
Pełny tekst źródłaGao, Junyuan, Xiurong Sun, Leon C. Moore, Thomas W. White, Peter R. Brink, and Richard T. Mathias. "Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling." Journal of General Physiology 137, no. 6 (2011): 507–20. http://dx.doi.org/10.1085/jgp.201010538.
Pełny tekst źródłaSocie, D. "Multiaxial Fatigue Damage Models." Journal of Engineering Materials and Technology 109, no. 4 (1987): 293–98. http://dx.doi.org/10.1115/1.3225980.
Pełny tekst źródłaScholz, M. "Mira model photospheres." Symposium - International Astronomical Union 122 (1987): 385–86. http://dx.doi.org/10.1017/s0074180900156815.
Pełny tekst źródłaNazir, I., and M. Azam. "Stability of generalized polytropic models." International Journal of Geometric Methods in Modern Physics 16, no. 04 (2019): 1950056. http://dx.doi.org/10.1142/s0219887819500567.
Pełny tekst źródłaBerntsen, Jarle, Jiuxing Xing, and Guttorm Alendal. "Assessment of non-hydrostatic ocean models using laboratory scale problems." Continental Shelf Research 26, no. 12-13 (2006): 1433–47. http://dx.doi.org/10.1016/j.csr.2006.02.014.
Pełny tekst źródłaLei, Yuan, Shadi Rajabi, Ryan M. Pedrigi, Darryl R. Overby, A. Thomas Read, and C. Ross Ethier. "In Vitro Models for Glaucoma Research: Effects of Hydrostatic Pressure." Investigative Opthalmology & Visual Science 52, no. 9 (2011): 6329. http://dx.doi.org/10.1167/iovs.11-7836.
Pełny tekst źródłaZhang, Di, Jiming Guo, Ming Chen, Junbo Shi, and Lv Zhou. "Quantitative assessment of meteorological and tropospheric Zenith Hydrostatic Delay models." Advances in Space Research 58, no. 6 (2016): 1033–43. http://dx.doi.org/10.1016/j.asr.2016.05.055.
Pełny tekst źródłaMahdavian, S. M. "A Thermal Hydrodynamic Lubrication Analysis for Hydrostatic Extrusion of a Work Hardening Metal." Journal of Tribology 108, no. 3 (1986): 368–71. http://dx.doi.org/10.1115/1.3261206.
Pełny tekst źródłaKaup, Magdalena, Wojciech Jurczak, and Janusz Kaup. "Design Methodology of Strength Verification of Platform During Load Out of the Arkutun Dagi SE-Topside 43.800 MT." Polish Maritime Research 23, no. 4 (2016): 117–28. http://dx.doi.org/10.1515/pomr-2016-0078.
Pełny tekst źródłaLemanis, Robert, Stefan Zachow, and René Hoffmann. "Comparative cephalopod shell strength and the role of septum morphology on stress distribution." PeerJ 4 (September 13, 2016): e2434. http://dx.doi.org/10.7717/peerj.2434.
Pełny tekst źródła