Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Hydromagnetic flow.

Artykuły w czasopismach na temat „Hydromagnetic flow”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hydromagnetic flow”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

WILLIS, A. P., i C. F. BARENGHI. "Hydromagnetic Taylor–Couette flow: numerical formulation and comparison with experiment". Journal of Fluid Mechanics 463 (25.07.2002): 361–75. http://dx.doi.org/10.1017/s0022112002001040.

Pełny tekst źródła
Streszczenie:
Taylor–Couette flow in the presence of a magnetic field is a problem belonging to classical hydromagnetics and deserves to be more widely studied than it has been to date. In the nonlinear regime the literature is scarce. We develop a formulation suitable for solution of the full three-dimensional nonlinear hydromagnetic equations in cylindrical geometry, which is motived by the formulation for the magnetic field. It is suitable for study at finite Prandtl numbers and in the small Prandtl number limit, relevant to laboratory liquid metals. The method is used to determine the onset of axisymmetric Taylor vortices, and finite-amplitude solutions. Our results compare well with existing linear and nonlinear hydrodynamic calculations and with hydromagnetic experiments.
Style APA, Harvard, Vancouver, ISO itp.
2

El-Kabeir, S. MM. "Hiemenz flow of a micropolar viscoelastic fluid in hydromagnetics". Canadian Journal of Physics 83, nr 10 (1.10.2005): 1007–17. http://dx.doi.org/10.1139/p05-039.

Pełny tekst źródła
Streszczenie:
Boundary-layer equations are solved for the hydromagnetic problem of two-dimensional Hiemenz flow, for a micropolar, viscoelastic, incompressible, viscous, electrically conducting fluid, impinging perpendicularly onto a plane in the presence of a transverse magnetic field. The governing system of equations is first transformed into a dimensionless form. The resulting equations then are solved by using the Runge–Kutta numerical integration procedure in conjunction with shooting technique. Numerical solutions are presented for the governing momentum and angular-momentum equations. The proposed approximate solution, although simple, is nevertheless sufficiently accurate for the entire investigated range of values of the Hartman number. The effect of micropolar and viscoelastic parameters on Hiemenz flow in hydromagnetics is discussed.PACS No.: 46.35
Style APA, Harvard, Vancouver, ISO itp.
3

Rafique, Anwar, Misiran, Khan, Baleanu, Nisar, Sherif i Seikh. "Hydromagnetic Flow of Micropolar Nanofluid". Symmetry 12, nr 2 (6.02.2020): 251. http://dx.doi.org/10.3390/sym12020251.

Pełny tekst źródła
Streszczenie:
Similar to other fluids (Newtonian and non-Newtonian), micropolar fluid also exhibits symmetric flow and exact symmetric solution similar to the Navier–Stokes equation; however, it is not always realizable. In this article, the Buongiorno mathematical model of hydromagnetic micropolar nanofluid is considered. A joint phenomenon of heat and mass transfer is studied in this work. This model indeed incorporates two important effects, namely, the Brownian motion and the thermophoretic. In addition, the effects of magnetohydrodynamic (MHD) and chemical reaction are considered. The fluid is taken over a slanted, stretching surface making an inclination with the vertical one. Suitable similarity transformations are applied to develop a nonlinear transformed model in terms of ODEs (ordinary differential equations). For the numerical simulations, an efficient, stable, and reliable scheme of Keller-box is applied to the transformed model. More exactly, the governing system of equations is written in the first order system and then arranged in the forms of a matrix system using the block-tridiagonal factorization. These numerical simulations are then arranged in graphs for various parameters of interest. The physical quantities including skin friction, Nusselt number, and Sherwood number along with different effects involved in the governing equations are also justified through graphs. The consequences reveal that concentration profile increases by increasing chemical reaction parameters. In addition, the Nusselt number and Sherwood number decreases by decreasing the inclination.
Style APA, Harvard, Vancouver, ISO itp.
4

Fearn, D. R. "Hydromagnetic flow in planetary cores". Reports on Progress in Physics 61, nr 3 (1.03.1998): 175–235. http://dx.doi.org/10.1088/0034-4885/61/3/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lucas, R. J. "On the stability of hydromagnetic flow". Journal of Plasma Physics 35, nr 1 (luty 1986): 145–50. http://dx.doi.org/10.1017/s002237780001120x.

Pełny tekst źródła
Streszczenie:
The linear stability of steady flow of an inhomogeneous, incompressible hydromagnetic fluid is considered. Circle theorems which provide bounds on the complex eigenfrequencies of the unstable normal modes are obtained. Sufficient conditions for stability follow in a number of special cases.
Style APA, Harvard, Vancouver, ISO itp.
6

WILLIS, A. P., i C. F. BARENGHI. "Hydromagnetic Taylor–Couette flow: wavy modes". Journal of Fluid Mechanics 472 (30.11.2002): 399–410. http://dx.doi.org/10.1017/s0022112002002409.

Pełny tekst źródła
Streszczenie:
We investigate magnetic Taylor–Couette flow in the presence of an imposed axial magnetic field. First we calculate nonlinear steady axisymmetric solutions and determine how their strength depends on the applied magnetic field. Then we perturb these solutions to find the critical Reynolds numbers for the appearance of wavy modes, and the related wave speeds, at increasing magnetic field strength. We find that values of imposed magnetic field which alter only slightly the transition from circular-Couette flow to Taylor-vortex flow, can shift the transition from Taylor-vortex flow to wavy modes by a substantial amount. The results are compared to those for onset in the absence of a magnetic field.
Style APA, Harvard, Vancouver, ISO itp.
7

Vajravelu, K., i J. Rivera. "Hydromagnetic flow at an oscillating plate". International Journal of Non-Linear Mechanics 38, nr 3 (kwiecień 2003): 305–12. http://dx.doi.org/10.1016/s0020-7462(01)00063-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Vajravelu, K. "An Exact Periodic Solution of a Hydromagnetic Flow in a Horizontal Channel". Journal of Applied Mechanics 55, nr 4 (1.12.1988): 981–83. http://dx.doi.org/10.1115/1.3173751.

Pełny tekst źródła
Streszczenie:
An exact periodic solution for the hydromagnetic unsteady flow of an incompressible fluid with constant properties is obtained. The hydrodynamic (HD) and the hydromagnetic (HM) cases are studied. The flow field here is a generalization of the well-known Couette flow, in which one wall is at rest and the other wall oscillates in its own plane about a constant mean velocity. In order to have some suggestions about the approximate solutions, the exact solution is compared with its own approximate form.
Style APA, Harvard, Vancouver, ISO itp.
9

Das, S., B. C. Sarkar i R. N. Jana. "Hall Effects on Hydromagnetic Rotating Couette Flow". International Journal of Computer Applications 83, nr 9 (18.12.2013): 20–26. http://dx.doi.org/10.5120/14477-2770.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

HERRON, ISOM H. "ONSET OF INSTABILITY IN HYDROMAGNETIC COUETTE FLOW". Analysis and Applications 02, nr 02 (kwiecień 2004): 145–59. http://dx.doi.org/10.1142/s0219530504000059.

Pełny tekst źródła
Streszczenie:
The stability of viscous flow between rotating cylinders in the presence of a constant axial magnetic field is considered. The boundary conditions for general conductivities are examined. It is proved that the Principle of Exchange of Stabilities holds at zero magnetic Prandtl number, for all Chandrasekhar numbers, when the cylinders rotate in the same direction, the circulation decreases outwards, and the cylinders have insulating walls. The result holds for both the finite gap and the narrow gap approximation.
Style APA, Harvard, Vancouver, ISO itp.
11

Joarder, P. S. "Hydromagnetic waves in solar wind flow-structures". Astronomy & Astrophysics 384, nr 3 (marzec 2002): 1086–97. http://dx.doi.org/10.1051/0004-6361:20011841.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

HAYAT, T., S. N. NEOSSI NGUETCHUE i F. M. MAHOMED. "TRANSIENT HYDROMAGNETIC FLOW OF A VISCOUS FLUID". International Journal of Modern Physics B 25, nr 19 (30.07.2011): 2533–42. http://dx.doi.org/10.1142/s0217979211101326.

Pełny tekst źródła
Streszczenie:
This investigation deals with the time-dependent flow of an incompressible viscous fluid bounded by an infinite plate. The fluid is electrically conducting under the influence of a transverse magnetic field. The plate moves with a time dependent velocity in its own plane. Both fluid and plate exhibit rigid body rotation with a constant angular velocity. The solutions for arbitrary velocity and magnetic field is presented through similarity and numerical approaches. It is found that rotation induces oscillations in the flow.
Style APA, Harvard, Vancouver, ISO itp.
13

Nagata, M. "Shear flow instability of rotating hydromagnetic fluids". Geophysical & Astrophysical Fluid Dynamics 33, nr 1-4 (wrzesień 1985): 173–84. http://dx.doi.org/10.1080/03091928508245428.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Chamkha, Ali J. "Hydromagnetic two-phase flow in a channel". International Journal of Engineering Science 33, nr 3 (luty 1995): 437–46. http://dx.doi.org/10.1016/0020-7225(93)e0006-q.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Hayat, T., R. Naz, A. Alsaedi i M. M. Rashidi. "Hydromagnetic rotating flow of third grade fluid". Applied Mathematics and Mechanics 34, nr 12 (9.11.2013): 1481–94. http://dx.doi.org/10.1007/s10483-013-1761-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Ruzmaikin, Alexander, Dmitry Sokoloff i Anvar Shukurov. "Hydromagnetic screw dynamo". Journal of Fluid Mechanics 197 (grudzień 1988): 39–56. http://dx.doi.org/10.1017/s0022112088003167.

Pełny tekst źródła
Streszczenie:
We solve the problem of magnetic field generation by a laminar flow of conducting fluid with helical (screw-like) streamlines for large magnetic Reynolds numbers, Rm. Asymptotic solutions are obtained with help of the singular perturbation theory. The generated field concentrates within cylindrical layers whose position, the magnetic field configuration and the growth rate are determined by the distribution of the angular, Ω, and longitudinal, Vz, velocities along the radius. The growth rate is proportional to Rm−½. When Ω and Vz are identically distributed along the radius, the asymptotic forms are of the WKB type; for different distributions, singular-layer asymptotics of the Prandtl type arise. The solutions are qualitatively different from those obtained for solid-body screw motion. The generation threshold strongly depends on the velocity profiles.
Style APA, Harvard, Vancouver, ISO itp.
17

Sengupta, P. R., T. K. Ray i L. Debnath. "On the unsteady flow of two visco-elastic fluids between two inclined porous plates". Journal of Applied Mathematics and Stochastic Analysis 5, nr 2 (1.01.1992): 131–38. http://dx.doi.org/10.1155/s1048953392000108.

Pełny tekst źródła
Streszczenie:
This study is concerned with both hydrodynamic and hydromagnetic unsteady slow flows of two immiscible visco-elastic fluids of Rivlin-Ericksen type between two porous parallel nonconducting plates inclined at a certain angle to the horizontal. The exact solutions for the velocity fields, skin frictions, and the interface velocity distributions are found for both fluid models. Numerical results are presented in graphs. A comparison is made between the hydrodynamic and hydromagnetic velocity profiles. It is shown that the velocity is diminished due to the presence of a transverse magnetic field.
Style APA, Harvard, Vancouver, ISO itp.
18

Hassan, Anthony R., Olufemi W. Lawal i Funmilayo F. Amurawaye. "Thermodynamic analysis of a variable viscosity reactive hydromagnetic couette flow within parallel plates". Tanzania Journal of Science 47, nr 2 (11.05.2021): 432–41. http://dx.doi.org/10.4314/tjs.v47i2.3.

Pełny tekst źródła
Streszczenie:
This investigation is to consider the impact of a temperature-dependent variable viscosity of a reactive hydromagnetic Couette fluid flowing within parallel plates. The variable property of the fluid viscosity is thought to be an exponential relation of temperature under the impact of magnetic strength. The differential equations controlling the smooth movement of fluid and energy transfer are modeled and solved by using the series solution of modified Adomian decomposition technique (mADM). The outcomes are shown in tables and graphs for different estimations of thermophysical properties present in the flow regime together with the rate of entropy generation and irreversibility distribution outcome. Keywords: Reactive fluids, Couette Flow, variable viscosity, hydromagnetic and modified Adomian decomposition method (mADM).
Style APA, Harvard, Vancouver, ISO itp.
19

Khabazi, Navid, i Kayvan Sadeghy. "Hydromagnetic Instability of Viscoelastic Fluids in Blasius Flow". Nihon Reoroji Gakkaishi 37, nr 4 (2009): 173–80. http://dx.doi.org/10.1678/rheology.37.173.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Shalybkov, Dmitrii A. "Hydrodynamic and hydromagnetic stability of the Couette flow". Physics-Uspekhi 52, nr 9 (30.09.2009): 915–35. http://dx.doi.org/10.3367/ufne.0179.200909d.0971.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Meena, S., i Prem Kumar Kandaswamy. "The Hydromagnetic Flow between Two Rotating Eccentric Cylinders". International Journal of Fluid Mechanics Research 26, nr 5-6 (1999): 597–617. http://dx.doi.org/10.1615/interjfluidmechres.v26.i5-6.50.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Meena, S., i Prem Kumar Kandaswamy. "The Hydromagnetic Flow between Two Rotating Eccentric Cylinders". International Journal of Fluid Mechanics Research 29, nr 5 (2002): 18. http://dx.doi.org/10.1615/interjfluidmechres.v29.i5.60.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

John Mwangi Karimi, Kennedy. "Hydromagnetic Turbulent Flow Between Two Parallel Infinite Plates". Science Journal of Applied Mathematics and Statistics 5, nr 1 (2017): 31. http://dx.doi.org/10.11648/j.sjams.20170501.15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Shalybkov, D. A. "Hydrodynamic and hydromagnetic stability of the Couette flow". Uspekhi Fizicheskih Nauk 179, nr 9 (2009): 971. http://dx.doi.org/10.3367/ufnr.0179.200909d.0971.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

HERRON, ISOM H. "ERRATUM: ONSET OF INSTABILITY IN HYDROMAGNETIC COUETTE FLOW". Analysis and Applications 02, nr 04 (październik 2004): 389. http://dx.doi.org/10.1142/s0219530504000424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

De-Xing, Kong. "Formation of Singularities in One-Dimensional Hydromagnetic Flow". Communications in Theoretical Physics 37, nr 4 (15.04.2002): 385–92. http://dx.doi.org/10.1088/0253-6102/37/4/385.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Attia, Hazem Ali, i Ahmed Lotfy Aboul-Hassan. "On hydromagnetic flow due to a rotating disk". Applied Mathematical Modelling 28, nr 12 (grudzień 2004): 1007–14. http://dx.doi.org/10.1016/j.apm.2004.03.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Abdelkhalek, M. M. "Hydromagnetic stagnation point flow by a perturbation technique". Computational Materials Science 42, nr 3 (maj 2008): 497–503. http://dx.doi.org/10.1016/j.commatsci.2007.08.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Zainuddin, N., S. F. Sufahani, A. Karimipour, M. Ali i R. Roslan. "HYDROMAGNETIC MIXED CONVECTION FLOW IN AN INCLINED CAVITY". JP Journal of Heat and Mass Transfer 15, nr 3 (31.08.2018): 543–68. http://dx.doi.org/10.17654/hm015030543.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Jha, Basant K., Luqman A. Azeez i Michael O. Oni. "Unsteady hydromagnetic-free convection flow with suction/injection". Journal of Taibah University for Science 13, nr 1 (20.11.2018): 136–45. http://dx.doi.org/10.1080/16583655.2018.1545624.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Bestman, A. R. "Hydromagnetic shock structure in high temperature hypersonic flow". Astrophysics and Space Science 179, nr 2 (1991): 177–88. http://dx.doi.org/10.1007/bf00646939.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Naveed, M., Z. Abbas i M. Sajid. "Hydromagnetic flow over an unsteady curved stretching surface". Engineering Science and Technology, an International Journal 19, nr 2 (czerwiec 2016): 841–45. http://dx.doi.org/10.1016/j.jestch.2015.11.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Sanyal, D. C., i S. K. Samanta. "Effect of radiation on hydromagnetic vertical channel flow". Czechoslovak Journal of Physics 39, nr 4 (kwiecień 1989): 384–91. http://dx.doi.org/10.1007/bf01597797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Vajravelu, K. "A Singular Perturbation Solution ofr a Hydromagnetic Flow". ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 68, nr 6 (1988): 255–56. http://dx.doi.org/10.1002/zamm.19880680628.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Chandran, Pallath, Nirmal C. Sacheti i A. K. Singh. "Effect of rotation on unsteady hydromagnetic Couette flow". Astrophysics and Space Science 202, nr 1 (1993): 1–10. http://dx.doi.org/10.1007/bf00626910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Devi, S. P. Anjali, i R. Uma Devi. "On hydromagnetic flow due to a rotating disk with radiation effects". Nonlinear Analysis: Modelling and Control 16, nr 1 (25.01.2011): 17–29. http://dx.doi.org/10.15388/na.16.1.14112.

Pełny tekst źródła
Streszczenie:
The effect of thermal radiation on the steady laminar convective hydromagnetic flow of a viscous and electrically conducting fluid due to a rotating disk of infinite extend is studied. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The governing Navier–Stokes and Maxwell equations of the hydromagnetic fluid, together with the energy equation, are transformed into nonlinear ordinary differential equations by using the von Karman similarity transformations. The resulting nonlinear ordinary differential equations are then solved numerically subject to the transformed boundary conditions by Runge–Kutta based shooting method. Comparisons with previously published works are performed and the results are found to be in excellent agreement. Numerical and graphical results for the velocity and temperature profiles as well as the skin friction and Nusselt number are presented and discussed for various parametric conditions.
Style APA, Harvard, Vancouver, ISO itp.
37

Shukurov, A., i D. D. Sokoloff. "Hydromagnetic Dynamo in Astrophysical Jets". Symposium - International Astronomical Union 157 (1993): 367–71. http://dx.doi.org/10.1017/s0074180900174431.

Pełny tekst źródła
Streszczenie:
The origin of a regular magnetic field in astrophysical jets is discussed. It is shown that jet plasma flow can generate a magnetic field provided the streamlines are helical. The dynamo of this type, known as the screw dynamo, generates magnetic fields with the dominant azimuthal wave number m = 1 whose field lines also have a helical shape. The field concentrates into a relatively thin cylindrical shell and its configuration is favorable for the collimation and confinement of the jet plasma.
Style APA, Harvard, Vancouver, ISO itp.
38

Selvaraj, Mekala, i S. P. Anjali Devi. "Hydromagnetic Flow of Nanofluids over a Nonlinear Shrinking Surface with Heat Flux and Mass Flux". International Journal of Trend in Scientific Research and Development Volume-1, Issue-6 (31.10.2017): 1302–11. http://dx.doi.org/10.31142/ijtsrd5793.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Chamkha, Ali J. "Exact solutions for hydromagnetic flow of a particulate suspension". AIAA Journal 30, nr 7 (lipiec 1992): 1922–24. http://dx.doi.org/10.2514/3.11158.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Ramachandra Rao, A., i K. S. Deshikachar. "Diffusion in Hydromagnetic Oscillatory Flow Through a Porous Channel". Journal of Applied Mechanics 54, nr 3 (1.09.1987): 742–44. http://dx.doi.org/10.1115/1.3173105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Ghaddar, N. "Turbulent hydromagnetic flow in bottom-heated thermosyphonic closed loop". Energy Conversion and Management 40, nr 12 (sierpień 1999): 1341–56. http://dx.doi.org/10.1016/s0196-8904(99)00010-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

YOUD, ANTHONY J., i CARLO F. BARENGHI. "Hydromagnetic Taylor–Couette flow at very small aspect ratio". Journal of Fluid Mechanics 550, nr -1 (27.02.2006): 27. http://dx.doi.org/10.1017/s0022112005007743.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ghosh, S. K., O. Anwar Bég i J. Zueco. "Hydromagnetic free convection flow with induced magnetic field effects". Meccanica 45, nr 2 (9.07.2009): 175–85. http://dx.doi.org/10.1007/s11012-009-9235-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

EL-Dabe, Nabil T. M., i Salwa M. G. EL-Mohandis. "Effect of couple stresses on pulsatile hydromagnetic poiseuille flow". Fluid Dynamics Research 15, nr 5 (maj 1995): 313–24. http://dx.doi.org/10.1016/0169-5983(94)00049-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chamkha, Ali J. "Hydromagnetic mixed convection stagnation flow with suction and blowing". International Communications in Heat and Mass Transfer 25, nr 3 (kwiecień 1998): 417–26. http://dx.doi.org/10.1016/s0735-1933(98)00029-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Malathy, T., i S. Srinivas. "Pulsating flow of a hydromagnetic fluid between permeable beds". International Communications in Heat and Mass Transfer 35, nr 5 (maj 2008): 681–88. http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.12.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Ezzat, Magdy A. "Power-law fluid flow of a hydromagnetic free jet". Journal of Computational and Applied Mathematics 54, nr 1 (wrzesień 1994): 37–43. http://dx.doi.org/10.1016/0377-0427(94)90392-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Sanyal, D. C., i S. K. Roy Chowdhury. "On hydromagnetic turbulent shear flow between moving parallel planes". Czechoslovak Journal of Physics 35, nr 5 (maj 1985): 502–11. http://dx.doi.org/10.1007/bf01595465.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Cheng, Po-Jen, i I.-Peng Chu. "Nonlinear hydromagnetic stability analysis of a pseudoplastic film flow". Aerospace Science and Technology 13, nr 4-5 (czerwiec 2009): 247–55. http://dx.doi.org/10.1016/j.ast.2009.04.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Dutta, B. K. "Heat transfer from a stretching sheet in hydromagnetic flow". Wärme- und Stoffübertragung 23, nr 1 (styczeń 1988): 35–37. http://dx.doi.org/10.1007/bf01460746.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii