Artykuły w czasopismach na temat „Hydrologic Method”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hydrologic Method”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Vu, T. T., J. Kiesel, B. Guse i N. Fohrer. "Towards an improved understanding of hydrological change – linking hydrologic metrics and multiple change point tests". Journal of Water and Climate Change 10, nr 4 (16.11.2018): 743–58. http://dx.doi.org/10.2166/wcc.2018.068.
Pełny tekst źródłaMeng, Xiao, Wu Qun Cheng i Xian Bing Wu. "Application of Progressive Teaching Model in Engineering Hydrology and Hydrologic Calculation". Advanced Materials Research 919-921 (kwiecień 2014): 2185–88. http://dx.doi.org/10.4028/www.scientific.net/amr.919-921.2185.
Pełny tekst źródłaZuo, Q., i S. Liang. "Effects of dams on river flow regime based on IHA/RVA". Proceedings of the International Association of Hydrological Sciences 368 (7.05.2015): 275–80. http://dx.doi.org/10.5194/piahs-368-275-2015.
Pełny tekst źródłaBauser, Hannes H., Daniel Berg, Ole Klein i Kurt Roth. "Inflation method for ensemble Kalman filter in soil hydrology". Hydrology and Earth System Sciences 22, nr 9 (21.09.2018): 4921–34. http://dx.doi.org/10.5194/hess-22-4921-2018.
Pełny tekst źródłaJavadinejad, Safieh. "A review on homogeneity across hydrological regions". Resources Environment and Information Engineering 3, nr 1 (2021): 124–37. http://dx.doi.org/10.25082/reie.2021.01.004.
Pełny tekst źródłaHerman, J. D., J. B. Kollat, P. M. Reed i T. Wagener. "Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models". Hydrology and Earth System Sciences 17, nr 7 (24.07.2013): 2893–903. http://dx.doi.org/10.5194/hess-17-2893-2013.
Pełny tekst źródłaHerman, J. D., J. B. Kollat, P. M. Reed i T. Wagener. "Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models". Hydrology and Earth System Sciences Discussions 10, nr 4 (5.04.2013): 4275–99. http://dx.doi.org/10.5194/hessd-10-4275-2013.
Pełny tekst źródłaWang, Jie, Guoqing Wang, Amgad Elmahdi, Zhenxin Bao, Qinli Yang, Zhangkang Shu i Mingming Song. "Comparison of hydrological model ensemble forecasting based on multiple members and ensemble methods". Open Geosciences 13, nr 1 (1.01.2021): 401–15. http://dx.doi.org/10.1515/geo-2020-0239.
Pełny tekst źródłaHe, Shaokun, Shenglian Guo, Zhangjun Liu, Jiabo Yin, Kebing Chen i Xushu Wu. "Uncertainty analysis of hydrological multi-model ensembles based on CBP-BMA method". Hydrology Research 49, nr 5 (1.03.2018): 1636–51. http://dx.doi.org/10.2166/nh.2018.160.
Pełny tekst źródłaPatil, Vaishnavi Kiran, Vidya R. Saraf, Omkesh V. Karad, Swapnil B. Ghodke, Dnyanesvar Gore i Shweta S. Dhekale. "Simulation of Rainfall Runoff Process Using HEC-HMS Model for Upper Godavari Basin Maharashtra, India". European Journal of Engineering Research and Science 4, nr 4 (22.04.2019): 102–7. http://dx.doi.org/10.24018/ejers.2019.4.4.927.
Pełny tekst źródłaPatil, Vaishnavi Kiran, Vidya R. Saraf, Omkesh V. Karad, Swapnil B. Ghodke, Dnyanesvar Gore i Shweta S. Dhekale. "Simulation of Rainfall Runoff Process Using HEC-HMS Model for Upper Godavari Basin Maharashtra, India". European Journal of Engineering and Technology Research 4, nr 4 (22.04.2019): 102–7. http://dx.doi.org/10.24018/ejeng.2019.4.4.927.
Pełny tekst źródłaDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts i D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences 19, nr 7 (23.07.2015): 3181–201. http://dx.doi.org/10.5194/hess-19-3181-2015.
Pełny tekst źródłaCarrillo, G., P. A. Troch, M. Sivapalan, T. Wagener, C. Harman i K. Sawicz. "Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient". Hydrology and Earth System Sciences Discussions 8, nr 3 (9.05.2011): 4583–640. http://dx.doi.org/10.5194/hessd-8-4583-2011.
Pełny tekst źródłaRahim, Akif, Xander Wang, Neelam Javed, Farhan Aziz, Amina Jahangir i Tahira Khurshid. "The Perturbation of Mangla Watershed Ecosystem in Pakistan Due to Hydrological Alteration". Water 15, nr 4 (8.02.2023): 656. http://dx.doi.org/10.3390/w15040656.
Pełny tekst źródłaYu, Cui Song, i Xiao Na Guo. "Hydrological Frequency Calculation Method Study of Urban Rivers Runoff under Changing Environment". Applied Mechanics and Materials 170-173 (maj 2012): 2023–26. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.2023.
Pełny tekst źródłaYu, Yufeng, Yuelong Zhu, Shijin Li i Dingsheng Wan. "Time Series Outlier Detection Based on Sliding Window Prediction". Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/879736.
Pełny tekst źródłaNickman, Alireza, Steve W. Lyon, Per-Erik Jansson i Bo Olofsson. "Simulating the impact of roads on hydrological responses: examples from Swedish terrain". Hydrology Research 47, nr 4 (27.01.2016): 767–81. http://dx.doi.org/10.2166/nh.2016.030.
Pełny tekst źródłaCarrillo, G., P. A. Troch, M. Sivapalan, T. Wagener, C. Harman i K. Sawicz. "Catchment classification: hydrological analysis of catchment behavior through process-based modeling along a climate gradient". Hydrology and Earth System Sciences 15, nr 11 (16.11.2011): 3411–30. http://dx.doi.org/10.5194/hess-15-3411-2011.
Pełny tekst źródłaShu, Lele, Paul A. Ullrich i Christopher J. Duffy. "Simulator for Hydrologic Unstructured Domains (SHUD v1.0): numerical modeling of watershed hydrology with the finite volume method". Geoscientific Model Development 13, nr 6 (18.06.2020): 2743–62. http://dx.doi.org/10.5194/gmd-13-2743-2020.
Pełny tekst źródłaDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts i D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences Discussions 11, nr 9 (10.09.2014): 10179–233. http://dx.doi.org/10.5194/hessd-11-10179-2014.
Pełny tekst źródłaMalekani, L., S. Khaleghi i M. Mahmoodi. "APPLICATION OF GIS IN MODELING ZILBERCHAI BASIN RUNOFF". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-2/W3 (22.10.2014): 181–86. http://dx.doi.org/10.5194/isprsarchives-xl-2-w3-181-2014.
Pełny tekst źródłaGolian, Saeed, Bahram Saghafian i Ashkan Farokhnia. "Copula-based interpretation of continuous rainfall–runoff simulations of a watershed in northern Iran". Canadian Journal of Earth Sciences 49, nr 5 (maj 2012): 681–91. http://dx.doi.org/10.1139/e2012-011.
Pełny tekst źródłaApaydin, H., F. Ozturk, H. Merdun i N. M. Aziz. "Determination of the drainage basin characteristics using vector GIS". Hydrology Research 37, nr 2 (1.04.2006): 129–42. http://dx.doi.org/10.2166/nh.2006.0011.
Pełny tekst źródłaLee, Hanyong, Min Suh Chae, Jong-Yoon Park, Kyoung Jae Lim i Youn Shik Park. "Development and Application of a QGIS-Based Model to Estimate Monthly Streamflow". ISPRS International Journal of Geo-Information 11, nr 1 (8.01.2022): 40. http://dx.doi.org/10.3390/ijgi11010040.
Pełny tekst źródłaLi, Zhe, Siyu Cai, Xiaohui Lei i Lingmin Wang. "Diagnosis of Basin Eco-Hydrological Variation Based on Index Sensitivity of Similar Years: A Case Study in the Hanjiang River Basin". Water 14, nr 12 (16.06.2022): 1931. http://dx.doi.org/10.3390/w14121931.
Pełny tekst źródłaCranmer, A. J., N. Kouwen i S. F. Mousavi. "Proving WATFLOOD: modelling the nonlinearities of hydrologic response to storm intensities". Canadian Journal of Civil Engineering 28, nr 5 (1.10.2001): 837–55. http://dx.doi.org/10.1139/l01-049.
Pełny tekst źródłaCai, Yaxi, i Xiaodong Yang. "Sediment Variation Characteristics of Major Rivers in the Middle Reaches of the Yellow River". Journal of Architectural Research and Development 5, nr 5 (28.09.2021): 20–26. http://dx.doi.org/10.26689/jard.v5i5.2519.
Pełny tekst źródłaMohd Lokoman, Rahmah, Fadhilah Yusof, Nor Eliza Alias i Zulkifli Yusop. "Construction of Dependence Structure for Rainfall Stations by Joining Time Series Models with Copula Method". Malaysian Journal of Fundamental and Applied Sciences 17, nr 4 (31.08.2021): 306–20. http://dx.doi.org/10.11113/mjfas.v17n4.2345.
Pełny tekst źródłaRichter, Brian D., Jeffrey V. Baumgartner, Jennifer Powell i David P. Braun. "A Method for Assessing Hydrologic Alteration within Ecosystems". Conservation Biology 10, nr 4 (sierpień 1996): 1163–74. http://dx.doi.org/10.1046/j.1523-1739.1996.10041163.x.
Pełny tekst źródłaAgarwal, A., R. Maheswaran, V. Sehgal, R. Khosa, B. Sivakumar i C. Bernhofer. "Hydrologic regionalization using wavelet-based multiscale entropy method". Journal of Hydrology 538 (lipiec 2016): 22–32. http://dx.doi.org/10.1016/j.jhydrol.2016.03.023.
Pełny tekst źródłaAtencia, A., L. Mediero, M. C. Llasat i L. Garrote. "Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model". Hydrology and Earth System Sciences 15, nr 12 (21.12.2011): 3809–27. http://dx.doi.org/10.5194/hess-15-3809-2011.
Pełny tekst źródłaWerner, Arelia T., i Alex J. Cannon. "Hydrologic extremes – an intercomparison of multiple gridded statistical downscaling methods". Hydrology and Earth System Sciences 20, nr 4 (19.04.2016): 1483–508. http://dx.doi.org/10.5194/hess-20-1483-2016.
Pełny tekst źródłaWerner, A. T., i A. J. Cannon. "Hydrologic extremes – an intercomparison of multiple gridded statistical downscaling methods". Hydrology and Earth System Sciences Discussions 12, nr 6 (26.06.2015): 6179–239. http://dx.doi.org/10.5194/hessd-12-6179-2015.
Pełny tekst źródłaChen, Lina, Longxi Han, Junyi Tan, Mengtian Zhou, Mingyuan Sun, Yi Zhang, Bo Chen, Chenfang Wang, Zixin Liu i Yubo Fan. "Water Environmental Capacity Calculated Based on Point and Non-Point Source Pollution Emission Intensity under Water Quality Assurance Rates in a Tidal River Network Area". International Journal of Environmental Research and Public Health 16, nr 3 (1.02.2019): 428. http://dx.doi.org/10.3390/ijerph16030428.
Pełny tekst źródłaNewman, Andrew J., Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor i Martyn P. Clark. "Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system". Hydrology and Earth System Sciences 25, nr 10 (25.10.2021): 5603–21. http://dx.doi.org/10.5194/hess-25-5603-2021.
Pełny tekst źródłaZlatanović, Nikola, i Sonja Gavrić. "Comparison of an Automated and Manual Method for Calculating Storm Runoff Response in Ungauged Catchments in Serbia". Journal of Hydrology and Hydromechanics 61, nr 3 (1.09.2013): 195–201. http://dx.doi.org/10.2478/johh-2013-0025.
Pełny tekst źródłaHua, Xu, Xue Hengxin i Chen Zhiguo. "Application of hydrologic forecast model". Water Science and Technology 66, nr 2 (1.07.2012): 239–46. http://dx.doi.org/10.2166/wst.2012.161.
Pełny tekst źródłaDomingo, N. D. Sto, A. Refsgaard, O. Mark i B. Paludan. "Flood analysis in mixed-urban areas reflecting interactions with the complete water cycle through coupled hydrologic-hydraulic modelling". Water Science and Technology 62, nr 6 (1.09.2010): 1386–92. http://dx.doi.org/10.2166/wst.2010.365.
Pełny tekst źródłaCho, Younghyun, i Bernard A. Engel. "Spatially distributed long-term hydrologic simulation using a continuous SCS CN method-based hybrid hydrologic model". Hydrological Processes 32, nr 7 (1.03.2018): 904–22. http://dx.doi.org/10.1002/hyp.11463.
Pełny tekst źródłaWang, S., G. H. Huang, B. W. Baetz i W. Huang. "Probabilistic Inference Coupled with Possibilistic Reasoning for Robust Estimation of Hydrologic Parameters and Piecewise Characterization of Interactive Uncertainties". Journal of Hydrometeorology 17, nr 4 (1.04.2016): 1243–60. http://dx.doi.org/10.1175/jhm-d-15-0131.1.
Pełny tekst źródłaHonti, M., A. Scheidegger i C. Stamm. "Importance of hydrological uncertainty assessment methods in climate change impact studies". Hydrology and Earth System Sciences Discussions 11, nr 1 (14.01.2014): 501–53. http://dx.doi.org/10.5194/hessd-11-501-2014.
Pełny tekst źródłaSun, Jun, Feng Ye, Nadia Nedjah, Ming Zhang i Dong Xu. "A Practical Yet Accurate Real-Time Statistical Analysis Library for Hydrologic Time-Series Big Data". Water 15, nr 4 (10.02.2023): 708. http://dx.doi.org/10.3390/w15040708.
Pełny tekst źródłaGourley, Jonathan J., i Baxter E. Vieux. "A Method for Evaluating the Accuracy of Quantitative Precipitation Estimates from a Hydrologic Modeling Perspective". Journal of Hydrometeorology 6, nr 2 (1.04.2005): 115–33. http://dx.doi.org/10.1175/jhm408.1.
Pełny tekst źródłaLiu, Yang, Shengle Cao, Yuheng Yang i Xi Zhang. "Assessment of hydrologic regime considering the distribution of hydrologic parameters". Water Supply 18, nr 3 (4.08.2017): 875–85. http://dx.doi.org/10.2166/ws.2017.161.
Pełny tekst źródłaWang, Wei, Jia Liu, Chuanzhe Li, Yuchen Liu i Fuliang Yu. "Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity". Remote Sensing 13, nr 4 (7.02.2021): 595. http://dx.doi.org/10.3390/rs13040595.
Pełny tekst źródłaZhang, Hanchen, i Weijiang Zhang. "Effect of time scale on flood simulation: maximum rainfall intensity and fractal theory based time disaggregation method for rainfall". Water Supply 20, nr 8 (13.10.2020): 3585–96. http://dx.doi.org/10.2166/ws.2020.250.
Pełny tekst źródłaLiu, Haifan, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye i in. "Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed". Hydrology and Earth System Sciences 24, nr 10 (23.10.2020): 4971–96. http://dx.doi.org/10.5194/hess-24-4971-2020.
Pełny tekst źródłaDas, S. "Distribution selection for hydrologic frequency analysis using subsampling method". IOP Conference Series: Earth and Environmental Science 39 (sierpień 2016): 012059. http://dx.doi.org/10.1088/1755-1315/39/1/012059.
Pełny tekst źródłaTan, Yaogeng, Sandra M. Guzman, Zengchuan Dong i Liang Tan. "Selection of Effective GCM Bias Correction Methods and Evaluation of Hydrological Response under Future Climate Scenarios". Climate 8, nr 10 (30.09.2020): 108. http://dx.doi.org/10.3390/cli8100108.
Pełny tekst źródłaMizukami, Naoki, Martyn P. Clark, Ethan D. Gutmann, Pablo A. Mendoza, Andrew J. Newman, Bart Nijssen, Ben Livneh, Lauren E. Hay, Jeffrey R. Arnold i Levi D. Brekke. "Implications of the Methodological Choices for Hydrologic Portrayals of Climate Change over the Contiguous United States: Statistically Downscaled Forcing Data and Hydrologic Models". Journal of Hydrometeorology 17, nr 1 (17.12.2015): 73–98. http://dx.doi.org/10.1175/jhm-d-14-0187.1.
Pełny tekst źródła