Gotowa bibliografia na temat „Hydrologic Method”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hydrologic Method”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hydrologic Method"
Vu, T. T., J. Kiesel, B. Guse i N. Fohrer. "Towards an improved understanding of hydrological change – linking hydrologic metrics and multiple change point tests". Journal of Water and Climate Change 10, nr 4 (16.11.2018): 743–58. http://dx.doi.org/10.2166/wcc.2018.068.
Pełny tekst źródłaMeng, Xiao, Wu Qun Cheng i Xian Bing Wu. "Application of Progressive Teaching Model in Engineering Hydrology and Hydrologic Calculation". Advanced Materials Research 919-921 (kwiecień 2014): 2185–88. http://dx.doi.org/10.4028/www.scientific.net/amr.919-921.2185.
Pełny tekst źródłaZuo, Q., i S. Liang. "Effects of dams on river flow regime based on IHA/RVA". Proceedings of the International Association of Hydrological Sciences 368 (7.05.2015): 275–80. http://dx.doi.org/10.5194/piahs-368-275-2015.
Pełny tekst źródłaBauser, Hannes H., Daniel Berg, Ole Klein i Kurt Roth. "Inflation method for ensemble Kalman filter in soil hydrology". Hydrology and Earth System Sciences 22, nr 9 (21.09.2018): 4921–34. http://dx.doi.org/10.5194/hess-22-4921-2018.
Pełny tekst źródłaJavadinejad, Safieh. "A review on homogeneity across hydrological regions". Resources Environment and Information Engineering 3, nr 1 (2021): 124–37. http://dx.doi.org/10.25082/reie.2021.01.004.
Pełny tekst źródłaHerman, J. D., J. B. Kollat, P. M. Reed i T. Wagener. "Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models". Hydrology and Earth System Sciences 17, nr 7 (24.07.2013): 2893–903. http://dx.doi.org/10.5194/hess-17-2893-2013.
Pełny tekst źródłaHerman, J. D., J. B. Kollat, P. M. Reed i T. Wagener. "Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models". Hydrology and Earth System Sciences Discussions 10, nr 4 (5.04.2013): 4275–99. http://dx.doi.org/10.5194/hessd-10-4275-2013.
Pełny tekst źródłaWang, Jie, Guoqing Wang, Amgad Elmahdi, Zhenxin Bao, Qinli Yang, Zhangkang Shu i Mingming Song. "Comparison of hydrological model ensemble forecasting based on multiple members and ensemble methods". Open Geosciences 13, nr 1 (1.01.2021): 401–15. http://dx.doi.org/10.1515/geo-2020-0239.
Pełny tekst źródłaHe, Shaokun, Shenglian Guo, Zhangjun Liu, Jiabo Yin, Kebing Chen i Xushu Wu. "Uncertainty analysis of hydrological multi-model ensembles based on CBP-BMA method". Hydrology Research 49, nr 5 (1.03.2018): 1636–51. http://dx.doi.org/10.2166/nh.2018.160.
Pełny tekst źródłaPatil, Vaishnavi Kiran, Vidya R. Saraf, Omkesh V. Karad, Swapnil B. Ghodke, Dnyanesvar Gore i Shweta S. Dhekale. "Simulation of Rainfall Runoff Process Using HEC-HMS Model for Upper Godavari Basin Maharashtra, India". European Journal of Engineering Research and Science 4, nr 4 (22.04.2019): 102–7. http://dx.doi.org/10.24018/ejers.2019.4.4.927.
Pełny tekst źródłaRozprawy doktorskie na temat "Hydrologic Method"
Chen, Mi. "Using an integrated linkage method to predict hydrological responses of a mixed land use watershed". Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu.
Pełny tekst źródłaTitle from first page of PDF file. Document formatted into pages; contains xvi, 378 p.; also includes graphics (some col.). Includes bibliographical references (p. 229-252). Available online via OhioLINK's ETD Center
Lee, Hyung-Jin. "Regional forecasting of hydrologic parameters". Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178223662.
Pełny tekst źródłaSun, Jingyun. "Hydrologic and hydraulic model development for flood mitigation and routing method comparison in Soap Creek Watershed, Iowa". Thesis, University of Iowa, 2015. https://ir.uiowa.edu/etd/1914.
Pełny tekst źródłaFabbiani-Leon, Angelique Marie. "Comparison method between gridded and simulated snow water equivalent estimates to in-situ snow sensor readings". Thesis, University of California, Davis, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1604056.
Pełny tekst źródłaCalifornia Department of Water Resources (DWR) Snow Surveys Section has recently explored the potential use of recently developed hydrologic models to estimate snow water equivalent (SWE) for the Sierra Nevada mountain range. DWR Snow Surveys Section’s initial step is to determine how well these hydrologic models compare to the trusted regression equations, currently used by DWR Snow Surveys Section. A comparison scheme was ultimately developed between estimation measures for SWE by interpreting model results for the Feather River Basin from: a) National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) gridded SWE reconstruction product, b) United States Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS), and c) DWR Snow Surveys Section regression equations. Daily SWE estimates were extracted from gridded results by computing an average SWE based on 1,000 ft elevation band increments from 3,000 to 10,000 ft (i.e. an elevation band would be from 3,000 to 4,000 ft). The dates used for processing average SWE estimates were cloud-free satellite image dates during snow ablation months, March to August, for years 2000–2012. The average SWE for each elevation band was linearly interpolated for each snow sensor elevation. The model SWE estimates were then compared to the snow sensor readings used to produce the snow index in DWR’s regression equations. In addition to comparing JPL’s SWE estimate to snow sensor readings, PRMS SWE variable for select hydrologic response units (HRU) were also compared to snow sensor readings. Research concluded with the application of statistical methods to determine the reliability in the JPL products and PRMS simulated SWE variable, with results varying depending on time duration being analyzed and elevation range.
Dolder, Herman Guillermo. "A Method for Using Pre-Computed Scenarios of Physically-Based Spatially-Distributed Hydrologic Models in Flood Forecasting Systems". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5676.
Pełny tekst źródłaZhang, Meijing. "Quantifying high-resolution hydrologic parameters at the basin scale using InSAR and inverse modeling, Las Vegas Valley, NV". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50833.
Pełny tekst źródłaPh. D.
Desai, Ahmed Yacoob. "Development of a hydraulic sub-model as part of a desktop environmental flow assessment method". Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1006200.
Pełny tekst źródłaHadley, Jennifer Lyn. "Near real-time runoff estimation using spatially distributed radar rainfall data". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/346.
Pełny tekst źródłaDehm, Dustin. "A Small Unmanned Aerial System (sUAS) Based Method for Monitoring Wetland Inundation & Vegetation". University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1556713788128588.
Pełny tekst źródłaFriedrich, Marciano. "Influência da precipitação no uso do método silveira para bacias hidrográficas entre 800 a 1000 km²". Universidade Federal de Santa Maria, 2017. http://repositorio.ufsm.br/handle/1/12185.
Pełny tekst źródłaA crescente demanda pelos recursos hídricos, para as mais diversas finalidades, tem evidenciado um cenário ainda deficitário em relação ao monitoramento fluviométrico, sobretudo em bacias hidrográficas com áreas inferiores a 1000 km², em grande parte das regiões do Brasil. As demandas estão vinculadas a disponibilidade hídrica e para a sua determinação em locais com carência de dados medidos torna-se necessário recorrer a técnicas como a regionalização de vazões, ou a simulação por meio de modelos chuva-vazão. Em 1997 foi proposto um método que se utiliza de poucas amostragens de medições de vazões locais para a determinação das vazões mínimas por meio de um modelo chuva-vazão, cujo processo matemático envolve dois parâmetros, o Cinf e o Ksub. O primeiro está relacionado ao balanço hídrico e o segundo ao deplecionamento fluvial. O objetivo desse trabalho foi verificar a influência da precipitação na aplicação dessa metodologia em bacias entre 800 a 1000 km² visando subsidiar informações acerca da elaboração de um protocolo de uso do método. Para o estudo de caso utilizaram-se quatro bacias com áreas entre 817 e 965 km² com disponibilidade de séries de dados fluviométricos e pluviométricos. A metodologia utilizada foi baseada no método Silveira. Inicialmente foram elaborados cenários de chuvas nas quatro bacias para posterior seleção dos eventos de estiagem, que juntamente com os cenários de chuvas, resultaram em um total de 1407 simulações por meio do uso do método Silveira. Para cada simulação foi gerada uma curva de permanência das vazões. A determinação dos erros foi realizada entre os pares de vazões simulados e os observados para os percentis considerados. Observou-se uma tendência de melhora nos resultados das simulações, traduzido pela menor dispersão dos erros, quando se utiliza informações de precipitação de mais de um posto pluviométrico. Com relação à posição espacial dos postos pluviométricos, verificou-se que não houve impactos significativos nos erros quando se utilizou dados dos postos localizados em diferentes pontos no interior da bacia e no seu entorno.
Książki na temat "Hydrologic Method"
Haeni, F. P. Application of seismic-refraction techniques to hydrologic studies. Washington, DC: U.S. Government Printing Office, 1988.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. Hartford, Conn: U.S. Dept. of the Interior, Geological Survey, 1986.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. Denver, Colo: US Geographical Survey, 1988.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. Hartford, Conn: U.S. Dept. of the Interior, Geological Survey, 1986.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaGeological Survey (U.S.), red. Application of seismic-refraction techniques to hydrologic studies. Hartford, Conn: U.S. Dept. of the Interior, Geological Survey, 1986.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. Hartford, Conn: U.S. Dept. of the Interior, Geological Survey, 1986.
Znajdź pełny tekst źródłaHaeni, F. P. Application of seismic-refraction techniques to hydrologic studies. [Reston, Va.?]: Dept. of the Interior, U.S. Geological Survey, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Hydrologic Method"
Mishra, S. K., Vijay P. Singh i P. K. Singh. "Revisiting the Soil Conservation Service Curve Number Method". W Hydrologic Modeling, 667–93. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_46.
Pełny tekst źródłaNgodock, Hans, i Matthew Carrier. "A Weak Constraint 4D-Var Assimilation System for the Navy Coastal Ocean Model Using the Representer Method". W Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), 367–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35088-7_15.
Pełny tekst źródłaZhou, Feifan, Xiaohao Qin, Boyu Chen i Mu Mu. "The Advances in Targeted Observations for Tropical Cyclone Prediction Based on Conditional Nonlinear Optimal Perturbation (CNOP) Method". W Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), 577–607. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35088-7_24.
Pełny tekst źródłaMilroy, Scott P. "Common Hydrologic Census Methods". W Field Methods in Marine Science, 93–106. Boca Raton: Garland Science, 2021. http://dx.doi.org/10.1201/9781317302292-5.
Pełny tekst źródłaChu, Xuefeng. "Quantifying Discontinuity, Connectivity, Variability, and Hierarchy in Overland Flow Generation: Comparison of Different Modeling Methods". W Hydrologic Modeling, 587–603. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_41.
Pełny tekst źródłaPriju, C. P., Jiby Francis, P. R. Arun i N. B. Narasimha Prasad. "Delineation of Paleochannels in Periyar River Basin of Kerala Using Remote Sensing and Electrical Resistivity Methods". W Hydrologic Modeling, 391–400. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_27.
Pełny tekst źródłaArora, Kishore, i Vijay P. Singh. "An Evaluation of Seven Methods for Estimating Parameters of EV1 Distribution". W Hydrologic Frequency Modeling, 383–94. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3953-0_27.
Pełny tekst źródłaSivakumar, Bellie. "Stochastic Time Series Methods". W Chaos in Hydrology, 63–110. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-90-481-2552-4_3.
Pełny tekst źródłaSlimani, M., i T. Lebel. "Comparison of Three Methods of Estimating Rainfall Frequency Parameters According to the Duration of Accumulation". W Hydrologic Frequency Modeling, 277–91. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3953-0_19.
Pełny tekst źródłaSivakumar, Bellie. "Modern Nonlinear Time Series Methods". W Chaos in Hydrology, 111–45. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-90-481-2552-4_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Hydrologic Method"
Sang, Yan-fang, i Dong Wang. "New Method for Estimating Periods in Hydrologic Series Data". W 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2008. http://dx.doi.org/10.1109/fskd.2008.85.
Pełny tekst źródłaTHAKUR, RITICA, PRAVEEN RATHOD i V. L. MANEKAR. "SUITABILITY OF IMAGE CLASSIFICATION METHOD FOR HYDROLOGIC AND HYDRAULIC APPLICATIONS". W 38th IAHR World Congress. The International Association for Hydro-Environment Engineering and Research (IAHR), 2019. http://dx.doi.org/10.3850/38wc092019-6661.
Pełny tekst źródłaYanfang, Sang, Wang Dong i Wu Jichun. "One Improved SAGA-ML Method for Parameters Estimation of Hydrologic Frequency Models". W 2009 WRI Global Congress on Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/gcis.2009.11.
Pełny tekst źródłaSang, Yan-Fang, Dong Wang, Ji-Chun Wu, Qing-Ping Zhu i Ling Wang. "A New Method of Periods' Identification in Hydrologic Series Based on EEMD". W 2009 International Conference on Artificial Intelligence and Computational Intelligence. IEEE, 2009. http://dx.doi.org/10.1109/aici.2009.236.
Pełny tekst źródłaLaFond, Kaye M., Veronica W. Griffis i Patricia Spellman. "Forcing Hydrologic Models with GCM Output: Bias Correction vs. the "Delta Change" Method". W World Environmental and Water Resources Congress 2014. Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413548.214.
Pełny tekst źródłaLi, J. Q., L. L. Xiang, W. Che i R. L. Ge. "Design and Hydrologic Estimation Method of Multi-Purpose Rain Garden: Beijing Case Study". W International Low Impact Development Conference 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/41009(333)67.
Pełny tekst źródłaTao, Bangyi, Zhihua Mao, Difeng Wang, Jianyu Chen i Baogang Jin. "Numerical simulation of the light field in the hydrologic system using in situ inherent optical properties and matrix-operator method". W Remote Sensing, redaktorzy Christopher M. U. Neale i Antonino Maltese. SPIE, 2010. http://dx.doi.org/10.1117/12.864897.
Pełny tekst źródłaCortivo, Fabio Dall, Ezzat S. Chalhoub i Haroldo F. Campos Velho. "A committee of MLP with adaptive slope parameter trained by the quasi-Newton method to solve problems in hydrologic optics". W 2012 International Joint Conference on Neural Networks (IJCNN 2012 - Brisbane). IEEE, 2012. http://dx.doi.org/10.1109/ijcnn.2012.6252665.
Pełny tekst źródłaShopova, Donka, i Olga Nitcheva. "ASSESSMENT OF ENVIRONMENTAL FLOW REQUIREMENTS ACCORDING TO BULGARIAN WATER LAW". W 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/3.1/s12.08.
Pełny tekst źródłaAllred, Barry J., M. Reza Ehsani i Jeffrey J. Daniels. "The Impact on Electrical Conductivity Measurement Due to Soil Profile Properties, Shallow Hydrologic Conditions, Fertilizer Application, Agricultural Tillage, and the Type of Geophysical Method Employed". W Symposium on the Application of Geophysics to Engineering and Environmental Problems 2003. Environment and Engineering Geophysical Society, 2003. http://dx.doi.org/10.4133/1.2923175.
Pełny tekst źródłaRaporty organizacyjne na temat "Hydrologic Method"
Alumbaugh, David L., i James R. Brainard. A Hydrologic-Geophysical Method for Characterizing Flow and Transport Processes within the Vadose Zone. Office of Scientific and Technical Information (OSTI), czerwiec 2000. http://dx.doi.org/10.2172/833714.
Pełny tekst źródłaAlumbaugh, David L., i James R. Brainard. A Hydrologic-Geophysical Method for Characterizing Flow and Transport Processes within the Vadose Zone. Office of Scientific and Technical Information (OSTI), czerwiec 2001. http://dx.doi.org/10.2172/833715.
Pełny tekst źródłaAlumbaugh, David L., i James R. Brainard. A Hydrologic-Geophysical Method for Characterizing Flow and Transport Processes within the Vadose Zone. Office of Scientific and Technical Information (OSTI), czerwiec 2004. http://dx.doi.org/10.2172/838688.
Pełny tekst źródłaDavid Alumbaugh, Douglas LaBrecque, James Brainard i T.C. A Hydrologic-geophysical Method for Characterizing Flow and Transport Processes Within The Vadose Zone. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/820952.
Pełny tekst źródłaHe, Jiachuan, Scott Hansen i Velimir Valentinov Vesselinov. Analysis of Hydrologic Time Series Reconstruction UncertaintyDue to Inverse Model InadequacyUsing the Laguerre Expansion Method. Office of Scientific and Technical Information (OSTI), styczeń 2017. http://dx.doi.org/10.2172/1338783.
Pełny tekst źródłaDoughty, Christine. Estimation of hydrologic properties of heterogeneous geologic media with an inverse method based on iterated function systems. Office of Scientific and Technical Information (OSTI), grudzień 1995. http://dx.doi.org/10.2172/195663.
Pełny tekst źródłaDoughty, Christine A. Estimation of hydrologic properties of heterogeneous geologic media with an inverse method based on iterated function systems. Office of Scientific and Technical Information (OSTI), maj 1996. http://dx.doi.org/10.2172/241577.
Pełny tekst źródłaHoward, Heidi, Chad Helmle, Raina Dwivedi i Daniel Gambill. Stormwater Management and Optimization Toolbox. Engineer Research and Development Center (U.S.), styczeń 2021. http://dx.doi.org/10.21079/11681/39480.
Pełny tekst źródłaHuang, Tao, i Venkatesh Merwade. Developing Customized NRCS Unit Hydrographs (Finley UHs) for Ungauged Watersheds in Indiana. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317644.
Pełny tekst źródłaJenkins, E. W., R. C. Berger, J. P. Hallberg, S. E. Howington, C. T. Kelley, J. H. Schmidt, A. K. Stagg i M. D. Tocci. A Two-Level Aggregation-Based Newton-Krylov-Schwartz Method for Hydrology. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1999. http://dx.doi.org/10.21236/ada445744.
Pełny tekst źródła