Gotowa bibliografia na temat „Hydrogen Storage Materials - Computational Studies”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hydrogen Storage Materials - Computational Studies”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hydrogen Storage Materials - Computational Studies"
Catlow, C. R. A., Z. X. Guo, M. Miskufova, S. A. Shevlin, A. G. H. Smith, A. A. Sokol, A. Walsh, D. J. Wilson i S. M. Woodley. "Advances in computational studies of energy materials". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, nr 1923 (28.07.2010): 3379–456. http://dx.doi.org/10.1098/rsta.2010.0111.
Pełny tekst źródłaLi, Yafei, Zhen Zhou, Panwen Shen, S. B. Zhang i Zhongfang Chen. "Computational studies on hydrogen storage in aluminum nitride nanowires/tubes". Nanotechnology 20, nr 21 (6.05.2009): 215701. http://dx.doi.org/10.1088/0957-4484/20/21/215701.
Pełny tekst źródłaGunawan, Rahmat, Cynthia Linaya Radiman, Muhamad Abdulkadir Martoprawiro i Hermawan K. Dipojono. "Graphite as A Hydrogen Storage in Fuel Cell System: Computational Material Study for Renewable Energy". Jurnal ILMU DASAR 17, nr 2 (1.02.2017): 103. http://dx.doi.org/10.19184/jid.v17i2.3499.
Pełny tekst źródłaRavindran, P., P. Vajeeston, H. Fjellvåg i A. Kjekshus. "Chemical-bonding and high-pressure studies on hydrogen-storage materials". Computational Materials Science 30, nr 3-4 (sierpień 2004): 349–57. http://dx.doi.org/10.1016/j.commatsci.2004.02.025.
Pełny tekst źródłaHudiyanti, Dwi, Noor Ichsan Hamidi, Daru Seto Bagus Anugrah, Siti Nur Milatus Salimah i Parsaoran Siahaan. "Encapsulation of Vitamin C in Sesame Liposomes: Computational and Experimental Studies". Open Chemistry 17, nr 1 (24.08.2019): 537–43. http://dx.doi.org/10.1515/chem-2019-0061.
Pełny tekst źródłaXie, Xin, Xushan Zhao i Jiangfeng Song. "A High-Throughput Computational Study on the Stability of Ni- and Ti-Doped Zr2Fe Alloys". Energies 15, nr 7 (22.03.2022): 2310. http://dx.doi.org/10.3390/en15072310.
Pełny tekst źródłaYang, Seung Jae, Jung Hyun Cho, Kunsil Lee, Taehoon Kim i Chong Rae Park. "Concentration-Driven Evolution of Crystal Structure, Pore Characteristics, and Hydrogen Storage Capacity of Metal Organic Framework-5s: Experimental and Computational Studies". Chemistry of Materials 22, nr 22 (23.11.2010): 6138–45. http://dx.doi.org/10.1021/cm101943e.
Pełny tekst źródłaMehboob, Muhammad Yasir, Riaz Hussain, Zobia Irshad, Ume Farwa, Muhammad Adnan i Shabbir Muhammad. "Designing and Encapsulation of Inorganic Al12N12 Nanoclusters with Be, Mg, and Ca Metals for Efficient Hydrogen Adsorption: A Step Forward Towards Hydrogen Storage Materials". Journal of Computational Biophysics and Chemistry 20, nr 07 (7.10.2021): 687–705. http://dx.doi.org/10.1142/s2737416521500411.
Pełny tekst źródłaLiu, Xingbo, Hanchen Tian i Wenyuan Li. "(Invited) Proton‐Conducting Solid Oxide Electrolysis Cells for Hydrogen Production - Materials Design and Catalyst Surface Engineering". ECS Meeting Abstracts MA2022-02, nr 49 (9.10.2022): 1907. http://dx.doi.org/10.1149/ma2022-02491907mtgabs.
Pełny tekst źródłaSunkara, Mahendra Kumar. "Plasma-molten Metal and/or Liquid Interactions for Materials/Chemical Processing". ECS Meeting Abstracts MA2020-01, nr 17 (1.05.2020): 1106. http://dx.doi.org/10.1149/ma2020-01171106mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Hydrogen Storage Materials - Computational Studies"
Srepusharawoot, Pornjuk. "Computational Studies of Hydrogen Storage Materials : Physisorbed and Chemisorbed Systems". Doctoral thesis, Uppsala universitet, Materialteori, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132875.
Pełny tekst źródłaFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 712
Mueller, Timothy Keith. "Computational studies of hydrogen storage materials and the development of related methods". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42138.
Pełny tekst źródłaIncludes bibliographical references (p. 193-199).
Computational methods, including density functional theory and the cluster expansion formalism, are used to study materials for hydrogen storage. The storage of molecular hydrogen in the metal-organic framework with formula unit Zn40(02C-C6H6-COD3 is considered. It is predicted that hydrogen adsorbs at five sites near the metal-oxide cluster, in good agreement with recent experimental data. It is also shown that the metal-oxide cluster affects the electronic structure of the organic linker, qualitatively affecting the way in which hydrogen binds to the linker. Lithium imide (Li2NH), a material present in several systems being considered for atomic hydrogen storage, is extensively investigated. A variation of the cluster expansion formalism that accounts for continuous bond orientations is developed to search for the ground state structure of this material, and a structure with a calculated energy lower than any known is found. Two additional discrete cluster expansions are used to predict that the experimentally observed phase of lithium imide is metastable at temperatures below approximately 200 K and stabilized primarily by vibrational entropy at higher temperatures. A new structure for this low-temperature phase that agrees well with experimental data is proposed. A method to improve the predictive power of cluster expansions through the application of statistical learning theory is developed, as are related algorithms. The Bayesian approach to regularization is used to show that by taking advantage of the prior expectation that cluster expansions are local, the convergence and prediction properties of cluster expansions can be significantly improved.
(cont.) A variety of methods to generate cluster expansions are evaluated on three different binary systems. It is suggested that a good method to generate cluster expansions is to use a prior distribution that penalizes the ECI for larger clusters more and has few parameters. It is shown that the generalized cross-validation score can be an efficient and effective substitute for the leave-one-out cross-validation score when searching for a good set of parameters for the prior distribution. Finally it is shown that the Bayesian approach can also be used to improve the convergence and prediction properties of cluster expansions for surfaces, nanowires, nanoparticles, and certain defects.
by Timothy K. Mueller.
Ph.D.
Larsson, Peter. "Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries". Doctoral thesis, Uppsala universitet, Materialteori, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108261.
Pełny tekst źródłaKelkar, T. "Computational study of hydrogen storage materials for fuel cells". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2009. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2757.
Pełny tekst źródłaMa, Zhu. "First-principles study of hydrogen storage materials". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22672.
Pełny tekst źródłaCommittee Chair: Mei-Yin Chou; Committee Member: Erbil, Ahmet; Committee Member: First, Phillip; Committee Member: Landman, Uzi; Committee Member: Wang, Xiao-Qian.
Sheppard, Drew A. "Hydrogen storage studies of mesoporous and titanium based materials". Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/1164.
Pełny tekst źródłaMartin, Gregory Stephen Bernard. "Solid-state nuclear magnetic resonance studies of hydrogen storage materials". Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14108/.
Pełny tekst źródłaMoss, Jared B. "Computational and Experimental Studies on Energy Storage Materials and Electrocatalysts". DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7537.
Pełny tekst źródłaHussain, Tanveer. "Computational Insights on Functional Materials for Clean Energy Storage : Modeling, Structure and Thermodynamics". Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-206938.
Pełny tekst źródłaKnick, Cory. "Modeling the Exfoliation Rate of Graphene Nanoplatelet Production and Application for Hydrogen Storage". Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347767528.
Pełny tekst źródłaKsiążki na temat "Hydrogen Storage Materials - Computational Studies"
George, Thomas F. Computational studies of new materials II: From ultrafast processes and nanostructures to optoelectronics, energy storage and nanomedicine. Singapore: World Scientific, 2011.
Znajdź pełny tekst źródłaYartys, Volodymyr, Yuriy Solonin i Ihor Zavaliy. HYDROGEN BASED ENERGY STORAGE: STATUS AND RECENT DEVELOPMENTS. Institute for Problems in Materials Science, 2021. http://dx.doi.org/10.15407/materials2021.
Pełny tekst źródłaNarlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Pełny tekst źródłaCzęści książek na temat "Hydrogen Storage Materials - Computational Studies"
Le, Viet-Duc, i Yong-Hyun Kim. "Energy Storage: Hydrogen". W Computational Approaches to Energy Materials, 131–48. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118551462.ch5.
Pełny tekst źródłaMajzoub, Eric H. "Computational Discovery of Hydrogen Storage Compounds". W Computational Studies of New Materials II, 481–502. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814287197_0018.
Pełny tekst źródłaMiwa, Kazutoshi. "Computational Materials Design for Hydrogen Storage". W Multiscale Simulations for Electrochemical Devices, 1–23. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9780429295454-1.
Pełny tekst źródłaKlein, R. A., H. A. Evans, B. A. Trump, T. J. Udovic i C. M. Brown. "Neutron scattering studies of materials for hydrogen storage". W Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-823144-9.00028-5.
Pełny tekst źródłaDornheim, Martin. "Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials". W Thermodynamics - Interaction Studies - Solids, Liquids and Gases. InTech, 2011. http://dx.doi.org/10.5772/21662.
Pełny tekst źródłaWalker, G., Mohamed Bououdina, Z. X. Guo i D. Fruchart. "Overview on Hydrogen Absorbing Materials". W Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, 312–42. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5824-0.ch013.
Pełny tekst źródłaMaiyelvaganan, K. R., M. Janani, K. Gopalsamy, M. K. Ravva, M. Prakash i V. Subramanian. "Studies on hydrogen storage in molecules, cages, clusters, and materials: A DFT study". W Atomic Clusters with Unusual Structure, Bonding and Reactivity, 213–35. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-822943-9.00019-x.
Pełny tekst źródłaPradhan, Renuka, i Upakarasamy Lourderaj. "Computational Studies on the Excited-State Intramolecular Proton Transfer in Five-Membered-Ring Hydrogen-Bonded Systems". W Hydrogen-Bonding Research in Photochemistry, Photobiology, and Optoelectronic Materials, 155–78. WORLD SCIENTIFIC (EUROPE), 2019. http://dx.doi.org/10.1142/9781786346087_0007.
Pełny tekst źródłaYeetsorn, Rungsima, i Yaowaret Maiket. "Hydrogen Fuel Cell Implementation for the Transportation Sector". W Hydrogen Implementation in Transportation Sector [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95291.
Pełny tekst źródłaStreszczenia konferencji na temat "Hydrogen Storage Materials - Computational Studies"
Hormaza Mejia, Nohora A., i Jack Brouwer. "Gaseous Fuel Leakage From Natural Gas Infrastructure". W ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88271.
Pełny tekst źródłaAvila, Raudel O., Md S. Islam i Pavana Prabhakar. "Thermal Gradient on Hybrid Composite Propellant Tank Materials at Cryogenic Temperatures". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65727.
Pełny tekst źródłaHe, Siyi. "Computational research method of nanostructured hydrogen storage materials". W International Conference on Sustainable Technology and Management (ICSTM 2022), redaktor Xilong Qu. SPIE, 2022. http://dx.doi.org/10.1117/12.2644688.
Pełny tekst źródłaSmith, Sheriden, i Young Ho Park. "Hydrogen Storage Using Carbon Nanostructures". W ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45019.
Pełny tekst źródłaOjwang’, J. G. O., Rutger van Santen, Gert Jan Kramer, Adri C. T. van Duin, William A. Goddard, Theodore E. Simos, George Maroulis, George Psihoyios i Ch Tsitouras. "Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH". W SELECTED PAPERS FROM ICNAAM-2007 AND ICCMSE-2007: Special Presentations at the International Conference on Numerical Analysis and Applied Mathematics 2007 (ICNAAM-2007), held in Corfu, Greece, 16–20 September 2007 and of the International Conference on Computational Methods in Sciences and Engineering 2007 (ICCMSE-2007), held in Corfu, Greece, 25–30 September 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2997304.
Pełny tekst źródłaPark, Y. H., i I. Hijazi. "EAM Potential for Hydrogen Storage Application". W ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65845.
Pełny tekst źródłaPourpoint, Timothe´e L., Aaron Sisto, Kyle C. Smith, Tyler G. Voskuilen, Milan K. Visaria, Yuan Zheng i Timothy S. Fisher. "Performance of Thermal Enhancement Materials in High Pressure Metal Hydride Storage Systems". W ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56450.
Pełny tekst źródłaTamburello, David, Bruce Hardy, Claudio Corgnale, Martin Sulic i Donald Anton. "Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles". W ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69411.
Pełny tekst źródłaTamburello, David, Bruce Hardy, Martin Sulic, Matthew Kesterson, Claudio Corgnale i Donald Anton. "Compact Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles". W ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/power2018-7474.
Pełny tekst źródłaRiahi, Adil, Sara Algurab, Marcel Otto, Erik Fernandez, Jayanta Kapat, Joshua Schmitt i Swati Saxena. "Numerical Performance Study of Adsorption Based Hydrogen Storage System in Silica Aerogel". W ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82711.
Pełny tekst źródłaRaporty organizacyjne na temat "Hydrogen Storage Materials - Computational Studies"
Yelon, William B. In-Situ Neutron Diffraction Studies of Complex Hydrogen Storage Materials. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1079211.
Pełny tekst źródła