Gotowa bibliografia na temat „Hydrogen fueled spark ignition engines”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hydrogen fueled spark ignition engines”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hydrogen fueled spark ignition engines"
Bade Shrestha, S. O., i Ghazi A. Karim. "The Operational Mixture Limits in Engines Fueled With Alternative Gaseous Fuels". Journal of Energy Resources Technology 128, nr 3 (3.04.2006): 223–28. http://dx.doi.org/10.1115/1.2266267.
Pełny tekst źródłaLi, Hailin, i Ghazi A. Karim. "Hydrogen Fueled Spark-Ignition Engines Predictive and Experimental Performance". Journal of Engineering for Gas Turbines and Power 128, nr 1 (23.07.2004): 230–36. http://dx.doi.org/10.1115/1.2055987.
Pełny tekst źródłaReggeti, Shawn A., Seamus P. Kane i William F. Northrop. "Hydrogen production in ammonia-fueled spark ignition engines". Applications in Energy and Combustion Science 14 (czerwiec 2023): 100136. http://dx.doi.org/10.1016/j.jaecs.2023.100136.
Pełny tekst źródłaShi, Wei Bo, Xiu Min Yu i Ping Sun. "Performance and Emissions of a Hydrogen-Gasoline SI Engine". Applied Mechanics and Materials 713-715 (styczeń 2015): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.243.
Pełny tekst źródłaNATRIASHVILI, Tamaz M., i Revaz Z. KAVTARADZE. "SPECIAL FEATURES OF THE HYDROGEN-DIESEL ENGINE WORKING PROCESS". Mechanics of Machines, Mechanisms and Materials 1, nr 58 (marzec 2022): 31–36. http://dx.doi.org/10.46864/1995-0470-2022-1-58-31-36.
Pełny tekst źródłaSZWAJA, Stanisław. "Hydrogen resistance to knock combustion in spark ignition internal combustion engines". Combustion Engines 144, nr 1 (1.02.2011): 13–19. http://dx.doi.org/10.19206/ce-117118.
Pełny tekst źródłaStępień, Zbigniew. "A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges". Energies 14, nr 20 (11.10.2021): 6504. http://dx.doi.org/10.3390/en14206504.
Pełny tekst źródłaYamin, Jehad Ahmad. "Heat losses minimization from hydrogen fueled 4-stroke spark ignition engines". Journal of the Brazilian Society of Mechanical Sciences and Engineering 29, nr 1 (marzec 2007): 109–14. http://dx.doi.org/10.1590/s1678-58782007000100014.
Pełny tekst źródłaBadr, O. A., N. Elsayed i G. A. Karim. "An Investigation of the Lean Operational Limits of Gas-Fueled Spark Ignition Engines". Journal of Energy Resources Technology 118, nr 2 (1.06.1996): 159–63. http://dx.doi.org/10.1115/1.2792708.
Pełny tekst źródłaPhantoun, Maethas, Karoon Fangsuwannarak i Thipwan Fangsuwannarak. "Emissions and Performance of a Hybrid Hydrogen-gasohol E20 Fueled Si Engine". Chiang Mai Journal of Science 49, nr 1 (31.01.2022): 145–54. http://dx.doi.org/10.12982/cmjs.2022.012.
Pełny tekst źródłaRozprawy doktorskie na temat "Hydrogen fueled spark ignition engines"
Hamori, Ferenc. "Exploring the limits of hydrogen assisted jet ignition /". Connect to thesis, 2006. http://eprints.unimelb.edu.au/archive/00001606.
Pełny tekst źródłaToulson, Elisa. "Applying alternative fuels in place of hydrogen to the jet ignition process /". Connect to thesis, 2008. http://repository.unimelb.edu.au/10187/3532.
Pełny tekst źródłaCambridge, Shevonn Nathaniel. "The effect of compression ratio on emissions from an alcohol-fueled engine". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09122009-040220/.
Pełny tekst źródłaToulson, E. "Applying alternative fuels in place of hydrogen to the jet ignition process". 2008. http://repository.unimelb.edu.au/10187/3532.
Pełny tekst źródłaThe benefits from the low temperature combustion at λ = 2 and leaner are that almost zero NOx is formed and there is an improvement in thermal efficiency. Efficiency improvements are a result of the elimination of dissociation, such as CO2 to CO, which normally occurs at high temperatures, together with reduced throttling losses to maintain the same road power. It is even possible to run the engine in an entirely unthrottled mode, but at λ = 5.
Although only a small amount of H2 is required for the HAJI process, it is difficult to both refuel H2 and store it onboard. In order to overcome these obstacles, the viability of a variety of more convenient fuels was experimentally assessed based on criteria such as combustion stability, lean limit and emission levels. The prechamber fuels tested were liquefied petroleum gas (LPG), natural gas, reformed gasoline and carbon monoxide. Additionally, LPG was employed as the main fuel in conjunction with H2 or LPG in the prechamber. Furthermore, the effects of HAJI operation under sufficient exhaust gas recirculation to allow stoichiometric fuel-air supply, thus permitting three-way catalyst application were also examined.
In addition to experiments, prechamber and main chamber flame propagation modeling was completed to examine the effects of each prechamber fuel on the ignition of the main fuel, which consisted of either LPG or gasoline. The modeling and experimental results offered similar trends, with the modeling results giving insight into the physiochemical process by which main fuel combustion is initiated in the HAJI process.
Both the modeling and experimental results indicate that the level of ignition enhancement provided by HAJI is highly dependent on the generation of chemical species and not solely on the energy content of the prechamber fuel. Although H2 was found to be the most effective fuel, in a study of a very light load condition (70 kPa MAP) especially when running in the ultra-lean region, the alternative fuels were effective at running between λ = 2-2.5 with almost zero NOx formation. These lean limits are about twice the value possible with spark ignition (λ = 1.25) in this engine at similar load conditions. In addition, the LPG results are very encouraging as they offer the possibility of a HAJI like system where a commercially available fuel is used as both the main and prechamber fuel, while providing thermal efficiency improvements over stoichiometric operation and meeting current NOx emission standards.
Burke, PH. "Performance appraisal of a four-stroke hydrogen internal combustion engine". Thesis, 2005. https://eprints.utas.edu.au/19195/1/whole_BurkePatrickHugh2005_thesis.pdf.
Pełny tekst źródłaSchmidt, Dennis Patrick. "Design and testing of a modular hydride hydrogen storage system for mobile vehicles". 1985. http://hdl.handle.net/2097/27531.
Pełny tekst źródłaAbader, Robert. "A Study on Biogas-fueled SI Engines: Effects of Fuel Composition on Emissions and Catalyst Performance". Thesis, 2014. http://hdl.handle.net/1807/44001.
Pełny tekst źródłaKsiążki na temat "Hydrogen fueled spark ignition engines"
Billings, Roger E. The hydrogen world view. Independence, Mo: American Academy of Science, 1991.
Znajdź pełny tekst źródłaEngineers, Society of Automotive, i Future Transportation Technology Conference and Exposition (1993 : San Antonio, Tex.), red. Alternative fuels: Alcohols, hydrogen, natural gas and propane. Warrendale, PA: Society of Automotive Engineers, 1993.
Znajdź pełny tekst źródłaHodgson, J. W. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines. Golden, CO: National Renewable Energy Laboratory, 1998.
Znajdź pełny tekst źródłaInc, Arthur D. Little, red. Partial oxidation for improved cold starts in alcohol-fueled engines: Phase II topical report. Golden, Colo: National Renewable Energy Laboratory, 1998.
Znajdź pełny tekst źródłaOffice, General Accounting. Alternative-fueled vehicles: Progress made in accelerating federal purchases, but benefits and costs remain uncertain : report to Congressional requesters. Washington, D.C: The Office, 1994.
Znajdź pełny tekst źródłaOffice, General Accounting. Alternative-fueled vehicles: Progress made in accelerating federal purchases, but benefits and costs remain uncertain : report to Congressional requesters. Washington, D.C: The Office, 1994.
Znajdź pełny tekst źródłaOffice, General Accounting. Alternative-fueled vehicles: Potential impact of exemptions from transportation control measures : report to the Chairman, Subcommittee on Energy and Power, Committee on Energy and Commerce, House of Representatives. Washington, D.C: U.S. General Accounting Office, 1993.
Znajdź pełny tekst źródłaOffice, General Accounting. Alternative-fueled vehicles: Potential impact of exemptions from transportation control measures : report to the Chairman, Subcommittee on Energy and Power, Committee on Energy and Commerce, House of Representatives. Washington, D.C: The Office, 1993.
Znajdź pełny tekst źródłaOffice, General Accounting. Alternative-fueled vehicles: Potential impact of exemptions from transportation control measures : report to the chairman, Subcommittee on Energy and Power, Committee on Energy and Commerce, House of Representatives. Washington, D.C: GAO, 1993.
Znajdź pełny tekst źródłaRouler sans pétrole. Québec: Éditions MultiMondes, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Hydrogen fueled spark ignition engines"
Verhelst, Sebastian, i James W. G. Turner. "Hydrogen-Fueled Spark Ignition Engines". W Hydrogen for Future Thermal Engines, 329–51. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28412-0_8.
Pełny tekst źródłaKoike, Makoto, Hiroshi Miyagawa, Tetsunori Suzuoki, Seiji Yamamoto i Kazuto Ogasawara. "Combustion in Ammonia-Hydrogen-Fueled Spark-Ignition Reciprocating Engines". W CO2 Free Ammonia as an Energy Carrier, 537–48. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4767-4_37.
Pełny tekst źródłaKosmadakis, G. M., F. Moreno, J. Arroyo, M. Muñoz i C. D. Rakopoulos. "Spark-Ignition Engine Fueled with Methane-Hydrogen Blends". W Energy, Transportation and Global Warming, 405–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30127-3_31.
Pełny tekst źródłaVerma, Saket, S. C. Kaushik i L. M. Das. "Exergy Analysis of Hydrogen-Fueled Spark Ignition Engine Based on Numerical Investigations". W Combustion for Power Generation and Transportation, 297–316. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3785-6_14.
Pełny tekst źródłaElumalai, P. V., N. S. Senthur, M. Parthasarathy, S. K. Das, Olusegun D. Samuel, M. Sreenivasa Reddy, A. Saravana i in. "Hydrogen in Spark Ignition Engines". W Energy, Environment, and Sustainability, 195–213. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8751-8_10.
Pełny tekst źródłaDe Simio, Luigi, Michele Gambino i Sabato Iannaccone. "Using Natural Gas/Hydrogen Mixture as a Fuel in a 6-Cylinder Stoichiometric Spark Ignition Engine". W Enriched Methane, 175–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22192-2_10.
Pełny tekst źródła"�1 Spark Ignition Gasoline-Fueled Engines ���������������������������������������". W Fuels, Energy, and the Environment, 218–37. CRC Press, 2016. http://dx.doi.org/10.1201/b12924-15.
Pełny tekst źródłaPana, Constantin, Maria Alexandra Ivan, Alexandru Cernat, Niculae Negurescu, Cristian Nuțu, Teodora Madalina Nichita i Gabriel Ivan. "Hydrogen Energy Use in Comfort and Transport". W Hydrogen Fuel Cell Technology for Stationary Applications, 223–38. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4945-2.ch009.
Pełny tekst źródłaDESOKY, A. A. "THEORETICAL STUDIES ON THE COMBUSTION OF HYDROGEN, ALCOHOL AND ISOOCTANE FUELS IN DIVIDED CHAMBER SPARK IGNITION ENGINE". W Hydrogen Systems, 21–33. Elsevier, 1986. http://dx.doi.org/10.1016/b978-1-4832-8375-3.50064-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Hydrogen fueled spark ignition engines"
Wallace, James S., Liviu Segal i James F. Keffer. "Lean Mixture Operation of Hydrogen-Fueled Spark Ignition Engines". W 1985 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/852119.
Pełny tekst źródłaMatham, V., K. Majmudar i K. Aung. "Numerical Simulations of a Hydrogen-Enriched Methane Fueled Spark Ignition Engine". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61047.
Pełny tekst źródłaRichardson, Steven W., Michael H. McMillian, Steven D. Woodruff, Todd Worstell i Dustin L. McIntyre. "Laser Spark Ignition of a Blended Hydrogen-Natural Gas Fueled Single Cylinder Engine". W ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ices2006-1397.
Pełny tekst źródłaBade Shrestha, S. O., i Ghazi A. Karim. "The Operational Mixture Limits in Engines Fueled With Alternative Gaseous Fuels". W ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1087.
Pełny tekst źródłaRamalho Leite, Caio, Richard Oung, Pierre BREQUIGNY, Jacques Borée i Fabrice Foucher. "Combustion Cycle-To-Cycle Variation Analysis in Diesel Baseline Hydrogen-Fueled Spark-Ignition Engines". W WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0290.
Pełny tekst źródłaLi, Hailin, i Ghazi A. Karim. "Hydrogen Fuelled Spark-Ignition Engines: Predictive and Experimental Performance". W ASME 2003 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ices2003-0548.
Pełny tekst źródłaChaurasia, Shashi, S. Sreedhara i Pavan Prakash Duvvuri. "Combustion Characteristics of Premixed Hydrogen Fueled Spark Ignition Engine". W Symposium on International Automotive Technology. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-26-0224.
Pełny tekst źródłaShudo, T., i H. Oka. "Thermophysical Properties of Working Substance and Heat Transfer in a Hydrogen Combustion Engine". W ASME 2003 Internal Combustion Engine and Rail Transportation Divisions Fall Technical Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/icef2003-0717.
Pełny tekst źródłaJi, Changwei, Hao Yan i Shuofeng Wang. "Simulation Study on Combustion Characteristics of a Spark Ignition Engine Fueled with Gasoline—Hydrogen Fuel Mixture". W 9th International Conference on Engines and Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-24-0093.
Pełny tekst źródłaPark, Seunghyun, Cheolwoong Park i Changgi Kim. "Effect of Exhaust Gas Recirculation on a Spark Ignition Engine Fueled with Biogas-Hydrogen Blends". W 10th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-24-0115.
Pełny tekst źródłaRaporty organizacyjne na temat "Hydrogen fueled spark ignition engines"
Chapman i Toema. PR-266-09211-R01 Physics-Based Characterization of Lambda Sensor from Natural Gas Fueled Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), listopad 2012. http://dx.doi.org/10.55274/r0010022.
Pełny tekst źródłaWillson. L51709 Development-Test Electronic Gas Admission for Large Bore Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 1994. http://dx.doi.org/10.55274/r0010114.
Pełny tekst źródłaOlsen, Daniel, i Azer Yalin. L52360 NOx Reduction Through Improved Precombustion Chamber Design. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2018. http://dx.doi.org/10.55274/r0011536.
Pełny tekst źródłaEffect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine. SAE International, kwiecień 2021. http://dx.doi.org/10.4271/2021-01-0478.
Pełny tekst źródła