Artykuły w czasopismach na temat „HYDROGEL NANOFIBERS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „HYDROGEL NANOFIBERS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Martin, Alma, Jenny Natalie Nyman, Rikke Reinholdt, Jun Cai, Anna-Lena Schaedel, Mariena J. A. van der Plas, Martin Malmsten, Thomas Rades i Andrea Heinz. "In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels". Nanomaterials 12, nr 14 (16.07.2022): 2437. http://dx.doi.org/10.3390/nano12142437.
Pełny tekst źródłaGuancha-Chalapud, Marcelo A., Liliana Serna-Cock i Diego F. Tirado. "Aloe vera Rind Valorization to Improve the Swelling Capacity of Commercial Acrylic Hydrogels". Fibers 10, nr 9 (30.08.2022): 73. http://dx.doi.org/10.3390/fib10090073.
Pełny tekst źródłaBayer, Ilker S. "A Review of Sustained Drug Release Studies from Nanofiber Hydrogels". Biomedicines 9, nr 11 (4.11.2021): 1612. http://dx.doi.org/10.3390/biomedicines9111612.
Pełny tekst źródłaGuancha-Chalapud, Marcelo A., Liliana Serna-Cock i Diego F. Tirado. "Hydrogels Are Reinforced with Colombian Fique Nanofibers to Improve Techno-Functional Properties for Agricultural Purposes". Agriculture 12, nr 1 (14.01.2022): 117. http://dx.doi.org/10.3390/agriculture12010117.
Pełny tekst źródłaChi, Hsiu Yu, Nai Yun Chang, Chuan Li, Vincent Chan, Jang Hsin Hsieh, Ya-Hui Tsai i Tingchao Lin. "Fabrication of Gelatin Nanofibers by Electrospinning—Mixture of Gelatin and Polyvinyl Alcohol". Polymers 14, nr 13 (27.06.2022): 2610. http://dx.doi.org/10.3390/polym14132610.
Pełny tekst źródłaDoench, Ingo, Tuan Tran, Laurent David, Alexandra Montembault, Eric Viguier, Christian Gorzelanny, Guillaume Sudre i in. "Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair". Biomimetics 4, nr 1 (20.02.2019): 19. http://dx.doi.org/10.3390/biomimetics4010019.
Pełny tekst źródłaHu, Enyi, Yihui Liang, Kangcha Chen, Xian Li i Jianhui Zhou. "Nanofibrous Wound Healing Nanocomposite Based on Alginate Scaffold: In Vitro and In Vivo Study". Journal of Biomedical Nanotechnology 18, nr 10 (1.10.2022): 2439–45. http://dx.doi.org/10.1166/jbn.2022.3441.
Pełny tekst źródłaBocková, Markéta, Aleksei Pashchenko, Simona Stuchlíková, Hana Kalábová, Radek Divín, Petr Novotný, Andrea Kestlerová i in. "Low Concentrated Fractionalized Nanofibers as Suitable Fillers for Optimization of Structural–Functional Parameters of Dead Space Gel Implants after Rectal Extirpation". Gels 8, nr 3 (4.03.2022): 158. http://dx.doi.org/10.3390/gels8030158.
Pełny tekst źródłaGunes, Oylum Colpankan, Aylin Ziylan Albayrak, Seyma Tasdemir i Aylin Sendemir. "Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair". Journal of Biomaterials Applications 35, nr 4-5 (29.06.2020): 515–31. http://dx.doi.org/10.1177/0885328220930714.
Pełny tekst źródłaWang, Bo-Xiang, Jia Li, De-Hong Cheng, Yan-Hua Lu i Li Liu. "Fabrication of Antheraea pernyi Silk Fibroin-Based Thermoresponsive Hydrogel Nanofibers for Colon Cancer Cell Culture". Polymers 14, nr 1 (29.12.2021): 108. http://dx.doi.org/10.3390/polym14010108.
Pełny tekst źródłaZhang, Xiaoli, Youzhi Wang, Yongquan Hua, Jinyou Duan, Minsheng Chen, Ling Wang i Zhimou Yang. "Kinetic control over supramolecular hydrogelation and anticancer properties of taxol". Chemical Communications 54, nr 7 (2018): 755–58. http://dx.doi.org/10.1039/c7cc08041g.
Pełny tekst źródłaMohd Kanafi, Nafeesa, Norizah Abdul Rahman, Nurul Husna Rosdi, Hasliza Bahruji i Hasmerya Maarof. "Hydrogel Nanofibers from Carboxymethyl Sago Pulp and Its Controlled Release Studies as a Methylene Blue Drug Carrier". Fibers 7, nr 6 (15.06.2019): 56. http://dx.doi.org/10.3390/fib7060056.
Pełny tekst źródłaNarayanan, Kannan Badri, Rakesh Bhaskar, Kuncham Sudhakar, Dong Hyun Nam i Sung Soo Han. "Polydopamine-Functionalized Bacterial Cellulose as Hydrogel Scaffolds for Skin Tissue Engineering". Gels 9, nr 8 (14.08.2023): 656. http://dx.doi.org/10.3390/gels9080656.
Pełny tekst źródłaKamdem Tamo, Arnaud, Ingo Doench, Lukas Walter, Alexandra Montembault, Guillaume Sudre, Laurent David, Aliuska Morales-Helguera i in. "Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues". Polymers 13, nr 10 (20.05.2021): 1663. http://dx.doi.org/10.3390/polym13101663.
Pełny tekst źródłaLiu, Shanfei, Guilin Wu, Wen Wang, Heng Wang, Yingjun Gao i Xuhong Yang. "In Situ Electrospinning of “Dry-Wet” Conversion Nanofiber Dressings for Wound Healing". Marine Drugs 21, nr 4 (14.04.2023): 241. http://dx.doi.org/10.3390/md21040241.
Pełny tekst źródłaJirkovec, Radek, Alzbeta Samkova, Tomas Kalous, Jiri Chaloupek i Jiri Chvojka. "Preparation of a Hydrogel Nanofiber Wound Dressing". Nanomaterials 11, nr 9 (25.08.2021): 2178. http://dx.doi.org/10.3390/nano11092178.
Pełny tekst źródłaMiao, Lei, Xiao Wang, Shi Li, Yuanyuan Tu, Jiwen Hu, Zhenzhu Huang, Shudong Lin i Xuefeng Gui. "An Ultra-Stretchable Polyvinyl Alcohol Hydrogel Based on Tannic Acid Modified Aramid Nanofibers for Use as a Strain Sensor". Polymers 14, nr 17 (28.08.2022): 3532. http://dx.doi.org/10.3390/polym14173532.
Pełny tekst źródłaHuang, Anshan, Yehong Chen i Chaojun Wu. "Wound Dressing Double-Crosslinked Quick Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Modified Nanocellulose". Polymers 15, nr 16 (13.08.2023): 3389. http://dx.doi.org/10.3390/polym15163389.
Pełny tekst źródłaHeydari Foroushani, Parisa Heydari, Erfan Rahmani, Iran Alemzadeh, Manouchehr Vossoughi, Mehrab Pourmadadi, Abbas Rahdar i Ana M. Díez-Pascual. "Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing". Nanomaterials 12, nr 19 (29.09.2022): 3426. http://dx.doi.org/10.3390/nano12193426.
Pełny tekst źródłaKim, Se Hye, Yuan Sun, Jonah A. Kaplan, Mark W. Grinstaff i Jon R. Parquette. "Photo-crosslinking of a self-assembled coumarin-dipeptide hydrogel". New Journal of Chemistry 39, nr 5 (2015): 3225–28. http://dx.doi.org/10.1039/c5nj00038f.
Pełny tekst źródłaPatel, Madhumita, i Won-Gun Koh. "Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells". Pharmaceutics 12, nr 9 (22.09.2020): 902. http://dx.doi.org/10.3390/pharmaceutics12090902.
Pełny tekst źródłaMiao, Chen, Penghui Li, Jiangdong Yu, Xuewen Xu, Fang Zhang i Guolin Tong. "Dual Network Hydrogel with High Mechanical Properties, Electrical Conductivity, Water Retention and Frost Resistance, Suitable for Wearable Strain Sensors". Gels 9, nr 3 (14.03.2023): 224. http://dx.doi.org/10.3390/gels9030224.
Pełny tekst źródłaFUJITA, SATOSHI. "Electrospinning of Native Collagen Hydrogel Nanofibers". Sen'i Gakkaishi 74, nr 8 (10.08.2018): P—374—P—378. http://dx.doi.org/10.2115/fiber.74.p-374.
Pełny tekst źródłaOmran, Khalida Abbas. "Bioactivation of Polyaniline for Biomedical Applications and Metal Oxide Composites". Journal of Chemistry 2022 (23.08.2022): 1–9. http://dx.doi.org/10.1155/2022/9328512.
Pełny tekst źródłaChen, Zhengkun, Nancy Khuu, Fei Xu, Sina Kheiri, Ilya Yakavets, Faeze Rakhshani, Sofia Morozova i Eugenia Kumacheva. "Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment". Gels 8, nr 11 (22.10.2022): 685. http://dx.doi.org/10.3390/gels8110685.
Pełny tekst źródłaHan, Shanshan, Kexin Nie, Jingchao Li, Qingqing Sun, Xiaofeng Wang, Xiaomeng Li i Qian Li. "3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications". Stem Cells International 2021 (17.06.2021): 1–22. http://dx.doi.org/10.1155/2021/8790143.
Pełny tekst źródłaHan, Chenyang, Xinyi Wang, Zhongjin Ni, Yihua Ni, Weiwei Huan, Yan Lv i Shuyang Bai. "Effects of nanocellulose on alginate/gelatin bio-inks for extrusion-based 3D printing". BioResources 15, nr 4 (5.08.2020): 7357–73. http://dx.doi.org/10.15376/biores.15.4.7357-7373.
Pełny tekst źródłaRamburrun, Poornima, Pradeep Kumar, Elias Ndobe i Yahya E. Choonara. "Gellan-Xanthan Hydrogel Conduits with Intraluminal Electrospun Nanofibers as Physical, Chemical and Therapeutic Cues for Peripheral Nerve Repair". International Journal of Molecular Sciences 22, nr 21 (26.10.2021): 11555. http://dx.doi.org/10.3390/ijms222111555.
Pełny tekst źródłaYixiu, Li, Yin Peiyi, Wu Kai, Wang Xiaomei i Song Yulin. "Self-Assembly of a Multi-Functional Hydrogel from a Branched Peptide Amphiphile and Its Effects on Bone Marrow Mesenchymal Stem Cells". Journal of Biomaterials and Tissue Engineering 10, nr 12 (1.12.2020): 1731–37. http://dx.doi.org/10.1166/jbt.2020.2492.
Pełny tekst źródłaHeidarian, Pejman, Abbas Z. Kouzani, Akif Kaynak, Ali Zolfagharian i Hossein Yousefi. "Dynamic Mussel-Inspired Chitin Nanocomposite Hydrogels for Wearable Strain Sensors". Polymers 12, nr 6 (24.06.2020): 1416. http://dx.doi.org/10.3390/polym12061416.
Pełny tekst źródłaTaka, Elissavet, Christina Karavasili, Nikolaos Bouropoulos, Thomas Moschakis, Dimitrios D. Andreadis, Constantinos K. Zacharis i Dimitrios G. Fatouros. "Ocular Co-Delivery of Timolol and Brimonidine from a Self-Assembling Peptide Hydrogel for the Treatment of Glaucoma: In Vitro and Ex Vivo Evaluation". Pharmaceuticals 13, nr 6 (21.06.2020): 126. http://dx.doi.org/10.3390/ph13060126.
Pełny tekst źródłaMa, Haohua, Xin Qiao i Lu Han. "Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications". Biomimetics 8, nr 1 (22.03.2023): 128. http://dx.doi.org/10.3390/biomimetics8010128.
Pełny tekst źródłaGrewal, M. Gregory, i Christopher B. Highley. "Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities". Biomaterials Science 9, nr 12 (2021): 4228–45. http://dx.doi.org/10.1039/d0bm01588a.
Pełny tekst źródłaCao, Jie, Zhilin Zhang, Kaiyun Li, Cha Ma, Weiqiang Zhou, Tao Lin, Jingkun Xu i Ximei Liu. "Self-Healable PEDOT:PSS-PVA Nanocomposite Hydrogel Strain Sensor for Human Motion Monitoring". Nanomaterials 13, nr 17 (31.08.2023): 2465. http://dx.doi.org/10.3390/nano13172465.
Pełny tekst źródłaSugioka, Yusuke, Jin Nakamura, Chikara Ohtsuki i Ayae Sugawara-Narutaki. "Thixotropic Hydrogels Composed of Self-Assembled Nanofibers of Double-Hydrophobic Elastin-Like Block Polypeptides". International Journal of Molecular Sciences 22, nr 8 (15.04.2021): 4104. http://dx.doi.org/10.3390/ijms22084104.
Pełny tekst źródłaLiang, Hao, Shuhui Jiang, Qipeng Yuan, Guofeng Li, Feng Wang, Zijie Zhang i Juewen Liu. "Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection". Nanoscale 8, nr 11 (2016): 6071–78. http://dx.doi.org/10.1039/c5nr08734a.
Pełny tekst źródłaLubasova, Daniela, Haitao Niu, Xueting Zhao i Tong Lin. "Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers". RSC Advances 5, nr 67 (2015): 54481–87. http://dx.doi.org/10.1039/c5ra07514a.
Pełny tekst źródłaFujita, Satoshi, Yuka Wakuda, Minori Matsumura i Shin-ichiro Suye. "Geometrically customizable alginate hydrogel nanofibers for cell culture platforms". Journal of Materials Chemistry B 7, nr 42 (2019): 6556–63. http://dx.doi.org/10.1039/c9tb01353a.
Pełny tekst źródłaBerglund, Linn, Fredrik Forsberg, Mehdi Jonoobi i Kristiina Oksman. "Promoted hydrogel formation of lignin-containing arabinoxylan aerogel using cellulose nanofibers as a functional biomaterial". RSC Advances 8, nr 67 (2018): 38219–28. http://dx.doi.org/10.1039/c8ra08166b.
Pełny tekst źródłaBasti, Aliakbar Tofangchi Kalle, Mehdi Jonoobi, Sima Sepahvand, Alireza Ashori, Valentina Siracusa, Davood Rabie, Tizazu H. Mekonnen i Fatemeh Naeijian. "Employing Cellulose Nanofiber-Based Hydrogels for Burn Dressing". Polymers 14, nr 6 (17.03.2022): 1207. http://dx.doi.org/10.3390/polym14061207.
Pełny tekst źródłaGrzywaczyk, Adam, Agata Zdarta, Katarzyna Jankowska, Andrzej Biadasz, Jakub Zdarta, Teofil Jesionowski, Ewa Kaczorek i Wojciech Smułek. "New Biocomposite Electrospun Fiber/Alginate Hydrogel for Probiotic Bacteria Immobilization". Materials 14, nr 14 (10.07.2021): 3861. http://dx.doi.org/10.3390/ma14143861.
Pełny tekst źródłaSun, Mingchao, Shaojuan Chen, Peixue Ling, Jianwei Ma i Shaohua Wu. "Electrospun Methacrylated Gelatin/Poly(L-Lactic Acid) Nanofibrous Hydrogel Scaffolds for Potential Wound Dressing Application". Nanomaterials 12, nr 1 (21.12.2021): 6. http://dx.doi.org/10.3390/nano12010006.
Pełny tekst źródłaSun, Yuan, Jonah A. Kaplan, Aileen Shieh, Hui-Lung Sun, Carlo M. Croce, Mark W. Grinstaff i Jon R. Parquette. "Self-assembly of a 5-fluorouracil-dipeptide hydrogel". Chemical Communications 52, nr 30 (2016): 5254–57. http://dx.doi.org/10.1039/c6cc01195k.
Pełny tekst źródłaTong, Junying, Xianlin Xu, Hang Wang, Xupin Zhuang i Fang Zhang. "Solution-blown core–shell hydrogel nanofibers for bovine serum albumin affinity adsorption". RSC Advances 5, nr 101 (2015): 83232–38. http://dx.doi.org/10.1039/c5ra19420b.
Pełny tekst źródłaZang, Linlin, Ru Lin, Tianwei Dou, Lu wang Lu wang, Jun Ma i Liguo Sun. "Electrospun superhydrophilic membranes for effective removal of Pb(ii) from water". Nanoscale Advances 1, nr 1 (2019): 389–94. http://dx.doi.org/10.1039/c8na00044a.
Pełny tekst źródłaMohabatpour, Fatemeh, Akbar Karkhaneh i Ali Mohammad Sharifi. "A hydrogel/fiber composite scaffold for chondrocyte encapsulation in cartilage tissue regeneration". RSC Advances 6, nr 86 (2016): 83135–45. http://dx.doi.org/10.1039/c6ra15592h.
Pełny tekst źródłaSingh, Ashmeet, Jojo P. Joseph, Deepika Gupta, Indranil Sarkar i Asish Pal. "Pathway driven self-assembly and living supramolecular polymerization in an amyloid-inspired peptide amphiphile". Chemical Communications 54, nr 76 (2018): 10730–33. http://dx.doi.org/10.1039/c8cc06266h.
Pełny tekst źródłaYao, Zhi, Jiankun Xu, Jun Shen, Ling Qin i Weihao Yuan. "Biomimetic Hierarchical Nanocomposite Hydrogels: From Design to Biomedical Applications". Journal of Composites Science 6, nr 11 (4.11.2022): 340. http://dx.doi.org/10.3390/jcs6110340.
Pełny tekst źródłaJiang, Yani, Xiaodong Xv, Dongfang Liu, Zhe Yang, Qi Zhang, Hongcan Shi, Guoqi Zhao i Jiping Zhou. "Preparation of cellulose nanofiber-reinforced gelatin hydrogel and optimization for 3D printing applications". BioResources 13, nr 3 (13.06.2018): 5909–24. http://dx.doi.org/10.15376/biores.13.3.5909-5924.
Pełny tekst źródłaFu, Qiuxia, Dandan Xie, Jianlong Ge, Wei Zhang i Haoru Shan. "Negatively Charged Composite Nanofibrous Hydrogel Membranes for High-Performance Protein Adsorption". Nanomaterials 12, nr 19 (6.10.2022): 3500. http://dx.doi.org/10.3390/nano12193500.
Pełny tekst źródła