Gotowa bibliografia na temat „HYDROGEL NANOFIBERS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HYDROGEL NANOFIBERS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "HYDROGEL NANOFIBERS"
Martin, Alma, Jenny Natalie Nyman, Rikke Reinholdt, Jun Cai, Anna-Lena Schaedel, Mariena J. A. van der Plas, Martin Malmsten, Thomas Rades i Andrea Heinz. "In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels". Nanomaterials 12, nr 14 (16.07.2022): 2437. http://dx.doi.org/10.3390/nano12142437.
Pełny tekst źródłaGuancha-Chalapud, Marcelo A., Liliana Serna-Cock i Diego F. Tirado. "Aloe vera Rind Valorization to Improve the Swelling Capacity of Commercial Acrylic Hydrogels". Fibers 10, nr 9 (30.08.2022): 73. http://dx.doi.org/10.3390/fib10090073.
Pełny tekst źródłaBayer, Ilker S. "A Review of Sustained Drug Release Studies from Nanofiber Hydrogels". Biomedicines 9, nr 11 (4.11.2021): 1612. http://dx.doi.org/10.3390/biomedicines9111612.
Pełny tekst źródłaGuancha-Chalapud, Marcelo A., Liliana Serna-Cock i Diego F. Tirado. "Hydrogels Are Reinforced with Colombian Fique Nanofibers to Improve Techno-Functional Properties for Agricultural Purposes". Agriculture 12, nr 1 (14.01.2022): 117. http://dx.doi.org/10.3390/agriculture12010117.
Pełny tekst źródłaChi, Hsiu Yu, Nai Yun Chang, Chuan Li, Vincent Chan, Jang Hsin Hsieh, Ya-Hui Tsai i Tingchao Lin. "Fabrication of Gelatin Nanofibers by Electrospinning—Mixture of Gelatin and Polyvinyl Alcohol". Polymers 14, nr 13 (27.06.2022): 2610. http://dx.doi.org/10.3390/polym14132610.
Pełny tekst źródłaDoench, Ingo, Tuan Tran, Laurent David, Alexandra Montembault, Eric Viguier, Christian Gorzelanny, Guillaume Sudre i in. "Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair". Biomimetics 4, nr 1 (20.02.2019): 19. http://dx.doi.org/10.3390/biomimetics4010019.
Pełny tekst źródłaHu, Enyi, Yihui Liang, Kangcha Chen, Xian Li i Jianhui Zhou. "Nanofibrous Wound Healing Nanocomposite Based on Alginate Scaffold: In Vitro and In Vivo Study". Journal of Biomedical Nanotechnology 18, nr 10 (1.10.2022): 2439–45. http://dx.doi.org/10.1166/jbn.2022.3441.
Pełny tekst źródłaBocková, Markéta, Aleksei Pashchenko, Simona Stuchlíková, Hana Kalábová, Radek Divín, Petr Novotný, Andrea Kestlerová i in. "Low Concentrated Fractionalized Nanofibers as Suitable Fillers for Optimization of Structural–Functional Parameters of Dead Space Gel Implants after Rectal Extirpation". Gels 8, nr 3 (4.03.2022): 158. http://dx.doi.org/10.3390/gels8030158.
Pełny tekst źródłaGunes, Oylum Colpankan, Aylin Ziylan Albayrak, Seyma Tasdemir i Aylin Sendemir. "Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair". Journal of Biomaterials Applications 35, nr 4-5 (29.06.2020): 515–31. http://dx.doi.org/10.1177/0885328220930714.
Pełny tekst źródłaWang, Bo-Xiang, Jia Li, De-Hong Cheng, Yan-Hua Lu i Li Liu. "Fabrication of Antheraea pernyi Silk Fibroin-Based Thermoresponsive Hydrogel Nanofibers for Colon Cancer Cell Culture". Polymers 14, nr 1 (29.12.2021): 108. http://dx.doi.org/10.3390/polym14010108.
Pełny tekst źródłaRozprawy doktorskie na temat "HYDROGEL NANOFIBERS"
Ahmadi, Mojtaba. "Mechanics of Surface Instabilities of Soft Nanofibers and Nonlinear Contacts of Hydrogels". Diss., North Dakota State University, 2020. https://hdl.handle.net/10365/31861.
Pełny tekst źródłaGUPTA, PREETI. "HYDROGEL BASED WOUND DRESSING MATERIAL". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18806.
Pełny tekst źródłaSato, Tabata Do Prado. "Desenvolvimento de biomateriais à base de quitosana : matriz de fibras eletrofiadas para regeneração tecidual e de hidrogel coacervado para entrega controlada de fármaco /". São José dos Campos, 2019. http://hdl.handle.net/11449/191168.
Pełny tekst źródłaCoorientador: Artur José Monteiro Valente
Banca: Bruno Vinícius Manzolli Rodrigues
Banca: Fernanda Alves Feitosa
Banca: Lafayette Nogueira Júnior
Banca: Eduardo Shigueyuki Uemura
Resumo: Os atuais avanços no desenvolvimento de biomateriais caminham para 2 áreas promissoras: a de regeneração tecidual e a de entrega controlada de fármacos. Assim, o presente estudo objetivou a síntese e caracterização de diferentes matrizes (fibras e hidrogel) à base de quitosana, a fim de se obter materiais biomiméticos para atuação em ambas áreas. Para regeneração, delineou-se a síntese de um arcabouço de fibras de quitosana com e sem cristais de nanohidroxiapatita onde, para isso, foram eletrofiadas soluções de quitosana (Ch) e de quitosana com nanohidroxiapatita (ChHa). Os espécimes de Ch apresentaram maior homogeneidade e maior diâmetro médio de fibras (690 ± 102 nm) que ChHa (358 ± 49 nm). No teste de viabilidade celular e na atividade da fosfatase alcalina não houve diferença estatística entre os grupos experimentais (Ch e ChHa), porém ambos diferiram do grupo controle (p < 0,001). Para o âmbito de liberação de fármacos, sintetizou-se, pela técnica de emulsão, dois tipos de hidrogéis: o primeiro, uma mistura da fase aquosa da solução de Ch (1 mL) e da solução de DNA (1 mL) (1:1) e o segundo, mistura da fase aquosa da solução de Ch (1 mL) e solução de Pectina (1 mL) (1:1). Ambas misturas foram realizadas em álcool benzílico (5 mL) com instrumento de dispersão de alto desempenho (31-34000 rpm min-1 por 5 min). Após a obtenção dos géis, 20mg de cada grupo foram imersos em uma solução aquosa de Própolis Verde (PV), na concentração de 70 μg/mL por 2 h e a cinética de liberação... (Resumo completo, clicar acesso eletrônico abaixo)
Current advances in biomaterial development are moving to 2 promising areas: tissue regeneration and controlled drug delivery. Thus, the present study aimed the synthesis and characterization of different matrices (fibers and hydrogel) based on chitosan, in order to obtain biomimetic materials for performance in both areas. For regeneration, the synthesis of a scaffold of chitosan fibers with and without nanohydroxyapatite crystals was delineated, where chitosan (Ch) and chitosan with hydroxyapatite (ChHa) solutions were electrospun. Ch specimens presented higher homogeneity and larger mean fiber diameter (690±102nm) than ChHa (358 ± 49nm). In the cell viability test and alkaline phosphatase activity there was no statistical difference between the experimental groups. (Ch and ChHa), but both differed from the control group (p < 0,001). For the drug release scope, two types of hydrogels were synthesized by the emulsion technique: the first, a mixture of the aqueous phase of Ch solution (1 mL) and DNA solution (1 mL) (1:1) and the second, mixture of the aqueous phase of the Ch solution (1mL) and Pectin solution (1 mL) (1:1). Both mixtures were performed in benzyl alcohol (5 mL) with high performance dispersion instrument (31-34000 rpm min-1 for 5 min). After obtaining the gels, 20mg from each group were immersed in an aqueous solution of Propolis Green (PV), at a concentration of 70 µg/mL for 2 h and the release kinetics of PV were analyzed at 25 and 37oC in water and artificial saliva. The obtained specimens were lyophilized and then physically-chemically characterized. The presence of pectin and DNA was confirmed by FTIR. PV sorption induced a significant modification of the gel surface. A phase separation was found between chitosan and DNA. Encapsulation efficiency did not change significantly between 25 and 37oC. The release kinetics in water or saliva presented a two-step mechanism. And the biological results...
Doutor
Philip, Diana Liz. "The Influence of Synthetic Microenvironments in Determining Stem Cell Fate". University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1627669247178055.
Pełny tekst źródłaBaddour, Joelle. "An Approach to Lens Regeneration in Mice Following Lentectomy and the Implantation of a Biodegradable Hydrogel Encapsulating Iris Pigmented Tissue in Combination with Basic Fibroblast Growth Factor". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335916825.
Pełny tekst źródłaMcCaldin, Simon Roger. "Hydrogen storage in graphitic nanofibres". Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/11568/.
Pełny tekst źródłaHaji, Aminoddin, Komeil Nasouri, Ahmad Mousavi Shoushtari i Ali Kaflou. "Reversible Hydrogen Storage in Electrospun Composite Nanofibers". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35201.
Pełny tekst źródłaGuo, Yuanhao. "Reinforcement of Hydrogels by Nanofiber Network". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1367237415.
Pełny tekst źródłaYang, Xianpeng. "Strong Cellulose Nanofiber Composite Hydrogels via Interface Tailoring". Kyoto University, 2020. http://hdl.handle.net/2433/253333.
Pełny tekst źródłaMushi, Ngesa Ezekiel. "Chitin nanofibers, networks and composites : Preparation, structure and mechanical properties". Doctoral thesis, KTH, Biokompositer, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155528.
Pełny tekst źródłaQC 20141110
Części książek na temat "HYDROGEL NANOFIBERS"
Wang, Boyi, Yong Zhu, Vien Huynh, Md Ataur Rahman, Brian Hawkett, Sharath Sriram i Dzung Viet Dao. "Palladium Nanofiber Networks Hydrogen Sensor and Hydrogen-Actuated Switches". W Sustainable Design and Manufacturing 2018, 116–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04290-5_12.
Pełny tekst źródłaYu, Tzu-Yi, Yun-Hsiu Tseng, Ming-Chung Wu, Cheng-Si Tsao i Wei-Fang Su. "Three-Dimensional Tomography of Cellulose Nanofibers- Polypeptides Nanocomposite Hydrogels". W Springer Proceedings in Physics, 43–49. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92786-8_6.
Pełny tekst źródłaHan, Ling, Tae Ki Lim, Young Jun Kim, Hyun Sik Hahm i Myung Soo Kim. "Hydrogen Production by Catalytic Decomposition of Methane over Carbon Nanofibers". W Materials Science Forum, 30–33. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-995-4.30.
Pełny tekst źródłaGupta, Bipin Kumar, i O. N. Srivastava. "Investigations on the Carbon Special Form Graphitic Nanofibres as a Hydrogen Storage Materials". W Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 177–84. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2669-2_18.
Pełny tekst źródłaLin, Jianlong, Wenjia Wu i Jingtao Wang. "Lamellar and Nanofiber-Based Proton Exchange Membranes for Hydrogen Fuel Cell". W Functional Membranes for High Efficiency Molecule and Ion Transport, 167–217. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8155-5_5.
Pełny tekst źródłaMeng, Xiangling, David Stout, Linlin Sun, Hicham Fenniri i Thomas Webster. "Injectable Biomimetic Hydrogels with Carbon Nanofibers and Novel Self Assembled Chemistries for Myocardial Applications". W Ceramic Transactions Series, 261–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118511466.ch25.
Pełny tekst źródłaManoukian, Ohan S., Rita Matta, Justin Letendre, Paige Collins, Augustus D. Mazzocca i Sangamesh G. Kumbar. "Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues". W Methods in Molecular Biology, 261–78. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6840-4_18.
Pełny tekst źródłaSharma, Hemlata J., i Subhash B. Kondawar. "Synthesis and characterization of SnO2/ polyaniline and al-doped SnO2/polyaniline composite nanofiber-based sensors for hydrogen gas sensing". W Novel Applications in Polymers and Waste Management, 123–36. Toronto ; New Jersey : Apple Academic Press, 2018.: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781315365848-7.
Pełny tekst źródłaKrasia-Christoforou, T. "Electrospinning of Multicomponent Hydrogels for Biomedical Applications". W Multicomponent Hydrogels, 192–230. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837670055-00192.
Pełny tekst źródłaPadhiari, Sandip, Manamohan Tripathy i Garudadhwaj Hota. "Functionalized nanofibers for hydrogen storage and conversion". W Functionalized Nanofibers, 689–717. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99461-3.00004-2.
Pełny tekst źródłaStreszczenia konferencji na temat "HYDROGEL NANOFIBERS"
Sadeghian, Ramin Banan, Samad Ahadian, Shin Yaginuma, Javier Ramon-Azcon, Xiaobin Liang, Ken Nakajima, Hitoshi Shiku, Tomokazu Matsue, Koji S. Nakayama i Ali Khademhosseini. "Metallic glass nanofibers in future hydrogel-based scaffolds". W 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944816.
Pełny tekst źródłaSerrano-Aroca, Ángel, Mar Llorens-Gámez i Beatriz Salesa. "Advanced hydrogel films of alginate/carbon nanofibers for biomedical applications". W MOL2NET 2020, International Conference on Multidisciplinary Sciences, 6th edition. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/mol2net-06-06785.
Pełny tekst źródłaNiemann, Michael U., Sesha S. Srinivasan, Ayala R. Phani, Ashok Kumar, D. Yogi Goswami i Elias K. Stefanakos. "Hydrogen Sorption Behavior in Conducting Polymer Nanostructures". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11554.
Pełny tekst źródłaSAITA, I., T. TOSHIMA, S. TANDA i T. AKIYAMA. "NANOFIBERS OF HYDROGEN STORAGE ALLOY". W Proceedings of the 1st International Symposium on TOP2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772879_0023.
Pełny tekst źródłaKalantar-zadeh, K., A. Sadek, W. Wlodarski, Y. x. Li i X. f. Yu. "SAW Hydrogen Sensor with Electropolymerized Polyaniline Nanofibers". W 2006 IEEE International Frequency Control Symposium and Exposition. IEEE, 2006. http://dx.doi.org/10.1109/freq.2006.275424.
Pełny tekst źródłaYao, Shuzhi, Meng Jiang, Hui Gao, Yufei Zhang, Shoulin Jiang, Zihao Zhang, Yong Yang i Xuefeng Wang. "The research on hydrogen sensor based on nanofiber". W Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, redaktorzy Shining Zhu, Qifeng Yu, Junhong Su, Lianghui Chen i Junhao Chu. SPIE, 2022. http://dx.doi.org/10.1117/12.2625209.
Pełny tekst źródłaChen, Yuxuan, Xiuru Xu, Junqi Feng i Zhengchun Peng. "Self-adhesive, Transparent, Conductive Hydrogels from Electrospun Core-shell Nanofibers". W 2023 6th International Conference on Electronics Technology (ICET). IEEE, 2023. http://dx.doi.org/10.1109/icet58434.2023.10211714.
Pełny tekst źródłaBilgili, Hatice Kubra, Gunnur Onak i Ozan Karaman. "Development and Characterization of Nanofiber-Reinforced Hydrogel for Bone Regeneration". W 2019 Medical Technologies Congress (TIPTEKNO). IEEE, 2019. http://dx.doi.org/10.1109/tiptekno.2019.8895003.
Pełny tekst źródłaQiu, Weiguo, Arjun Stokes, Joseph Cappello i Xiaoyi Wu. "Electrospinning of Recombinant Protein Polymer Nanofibers". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206352.
Pełny tekst źródłaHuang, Changfa, Xiuru Xu, Yuxuan Chen i ZhengChun Peng. "Electrospun Titanium Dioxide Nanofibers Reinforced Anti-freezing, Adhesive and Conductive Hydrogels". W 2022 IEEE 5th International Conference on Electronics Technology (ICET). IEEE, 2022. http://dx.doi.org/10.1109/icet55676.2022.9824738.
Pełny tekst źródłaRaporty organizacyjne na temat "HYDROGEL NANOFIBERS"
Skolnik, E. G. Hydrogen storage in carbon nanofibers as being studied by Northeastern University. Technical evaluation report. Office of Scientific and Technical Information (OSTI), czerwiec 1997. http://dx.doi.org/10.2172/674688.
Pełny tekst źródła