Gotowa bibliografia na temat „Hydrodynamic stability theory”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hydrodynamic stability theory”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hydrodynamic stability theory"
Georgescu, A., i J. T. Stuart. "Hydrodynamic Stability Theory". Journal of Applied Mechanics 54, nr 1 (1.03.1987): 250. http://dx.doi.org/10.1115/1.3172987.
Pełny tekst źródłaDauchot, Olivier, i Paul Manneville. "Local Versus Global Concepts in Hydrodynamic Stability Theory". Journal de Physique II 7, nr 2 (luty 1997): 371–89. http://dx.doi.org/10.1051/jp2:1997131.
Pełny tekst źródłaMalik, Mujeeb R. "Review of "Theory and Computation in Hydrodynamic Stability."". AIAA Journal 43, nr 4 (kwiecień 2005): 924–25. http://dx.doi.org/10.2514/1.16537.
Pełny tekst źródłaYano, Masayuki, i Anthony T. Patera. "A space–time variational approach to hydrodynamic stability theory". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, nr 2155 (8.07.2013): 20130036. http://dx.doi.org/10.1098/rspa.2013.0036.
Pełny tekst źródłaHeng, Zhou, i K. Fujimura. "Further improvement of weakly nonlinear theory of hydrodynamic stability". Science in China Series A: Mathematics 41, nr 1 (styczeń 1998): 84–92. http://dx.doi.org/10.1007/bf02900777.
Pełny tekst źródłaShao, Song Shi, Jiong Sun i Kai Liu. "Bifurcation Analysis for Sailing Stability of Autonomous Underwater Vehicle". Applied Mechanics and Materials 44-47 (grudzień 2010): 1682–86. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.1682.
Pełny tekst źródłaAndreichenko, D. K., i K. P. Andreichenko. "On the theory of stability of a cylindrical hydrodynamic suspension". Fluid Dynamics 44, nr 1 (luty 2009): 10–21. http://dx.doi.org/10.1134/s0015462809010025.
Pełny tekst źródłaChow, Carson C., i Terence Hwa. "Defect-mediated stability: an effective hydrodynamic theory of spatiotemporal chaos". Physica D: Nonlinear Phenomena 84, nr 3-4 (lipiec 1995): 494–512. http://dx.doi.org/10.1016/0167-2789(95)00072-c.
Pełny tekst źródłaKuhlmann, H. C., i H. J. Rath. "Hydrodynamic instabilities in cylindrical thermocapillary liquid bridges". Journal of Fluid Mechanics 247 (luty 1993): 247–74. http://dx.doi.org/10.1017/s0022112093000461.
Pełny tekst źródłaKhayat, Roger E., i Byung Chan Eu. "Generalized hydrodynamics and linear stability analysis of cylindrical Couette flow of a dilute Lennard–Jones fluid". Canadian Journal of Physics 71, nr 11-12 (1.11.1993): 518–36. http://dx.doi.org/10.1139/p93-081.
Pełny tekst źródłaRozprawy doktorskie na temat "Hydrodynamic stability theory"
Yañez, Vico Carlos. "Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14612/document.
Pełny tekst źródłaThe Rayleigh-Taylor instability is a major issue in inertial confinement fusion capable to prevent appropriate target implosions. In the direct-drive approach, the energy deposited by directed laser irradiation ablates off the external shell of the capsule (ablator) into a low-density expanding plasma. This induces a high pressure around the ablating target surface (ablation region) that accelerates the capsule radially inwards. This situation, a low density fluid pushing and accelerating a higher density one, is the standard situation for the development of the Rayleigh-Taylor instability, and therefore a potential source of target compression degradation. For moderate-Z materials, the hydrodynamic structure of the ablation region is made up of two ablation fronts (double ablation front) due to the increasing importance of radiation effects. This thesis develops for the first time a linear stability theory of double ablation fronts for direct-drive inertial confinement fusion targets
King, Peter Samuel. "A parametric study of the hydrodynamic stability theory of 3-D compressible free shear flows". Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39703.
Pełny tekst źródłaPh. D.
Kolli, Kranthi Kumar. "Domain Effects in the Finite / Infinite Time Stability Properties of a Viscous Shear Flow Discontinuity". Connect to this title, 2008. http://scholarworks.umass.edu/theses/204/.
Pełny tekst źródłaCastro, Marcelo Souza de. "Fenômeno de transição espacial do escoamento óleo pesado-água no padrão estratificado". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/18/18147/tde-18092013-164235/.
Pełny tekst źródłaThe stratified oil-water flow pattern is of common occurrence in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The transition from stratified flow to stratified with mixture at the interface has been studied by several authors and the physics behind the phenomenon has been already explained, basically by the tearing of droplets from the interfacial wave crest. Techniques based on a temporal analysis of the hydrodynamic stability for the proposition of transition criteria are often found in the literature. However, at certain inlet flow conditions, it was observed that the flow pattern changes along the test line. The flow enters the test line as wavy stratified flow and then, several diameters from the pipe inlet, the transition to elongated-bubbles flow occurs. It was also observed that the location where the transition occurs also changes depending on the phases superficial velocities. It seems that this phenomenon occurs due to interfacial tension and contact angle effects. The one-dimensional two-fluid model, linear stability theory (spatial approach) and experimental data of the interfacial wave properties are used to study the flow and a new transition criterion based on the wave celerity is proposed. The stratified-flow spatial transition occurred outside the region delimitated as stable by the linear theory; so nonlinear effects are prominent. The method of characteristics was used as an attempt to predict the point in space at which the transition occurs. The experimental work was done at the experimental facility of the Thermal-fluids Engineering Laboratory; experimental data allowed a new oil-water flow map and interfacial wave properties were acquired. The agreement between data and prediction is encouraging.
Coelho, David Montenegro 1990. "Tópicos em dinâmica de fluidos como uma teoria de campo". [s.n.], 2016. http://repositorio.unicamp.br/jspui/handle/REPOSIP/320983.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-31T06:57:06Z (GMT). No. of bitstreams: 1 Coelho_DavidMontenegro_M.pdf: 2238497 bytes, checksum: 78f745f9d544a31d97a2d7a80b7dc505 (MD5) Previous issue date: 2016
Resumo: O interesse científico cresceu após confirmado por testes experimentais o comportamento do Plasma de Quark-Glúon como um fluido quase perfeito no LHC e RHIC. O objetivo desse trabalho é fornecer as bases teóricas da Effective Field Theory (EFT) na abordagem da Hidrodinâmica, pois vários recursos não-triviais na dinâmica relativística dos fluidos são claramente explicados por esse formalismo. Problemas teóricos na EFT sugerem a inclusão de uma nova formulação do Princípio de Hamilton compatível com o princípio da causalidade, através do Closed-Time-Path. Após resolvido esse problema, alcançamos o requisito necessário para derivar a hidrodinâmica dissipativa em altas ordens por meio da ação. Assim, conseguimos caracterizar a Lagrangeana de Navier-Stokes ao introduzir a quebra de simetria na preservação do difeomorfismo pelo volume por meio do termo $B^{-1}_{IJ}$. No entanto, uma análise pelo método de Ostrogradski levou à supressão dessa equação, através da inclusão da Lagrangeana de Israel-Stewart na expansão que é justificada por meios de argumentos de estabilidade e causalidade. Por fim, propomos uma variável $X_{IJ}$ na Lagrangeana de Israel-Stewart, simétrica, anisotrópica e dependente das condições iniciais que juntamente com os já estabelecidos graus de liberdade de campo, formam a base para a derivação bottom-up em altas ordens da EFT e propicia medidas para estudar turbulência e instabilidade no vácuo e outras situações que chegam da relação entre graus de liberdade macroscópico e microscópico
Abstract: Scientific interest grew after the behavior of the quark-gluon Plasma as a nearly perfect fluid in the LHC and RHIC. The objective of this dissertation is offer support to use the Effective Field Theory (EFT) approach to study hydrodynamics because many non-trivial features in relativistic fluid dynamics are clearly explained by this Lagrangian formalism. Theoretical problems in EFT considering by including a new formulation of the Hamiltonian principle that is compatible with the principle of causality for non-conservative field through the Closed-Time-Path formalism. After solving this problem, we reached requirement to derive the dissipative hydrodynamics in higher orders of action. We were able to characterize Navier-Stokes' Lagrangian by introducing the symmetry breaking of preserving diffeomorphism through the volume with the term $B^{-1}_{IJ} $ to the Lagrangian of Navier-Stokes. An analyse of Ostrogradski's method led to the removal of equation by including the Israel-Stewart term in the Lagrangian expansion that provides an extra justification by means of symmetry and causality arguments. Finally, we propose a variable $ X_ {IJ} $, Israel-Stewart's Lagrangian, symmetric, anisotropic and dependent on initial conditions together with an established degree of freedom of the field, which form the basis for the derivation of higher orders of the bottom up and promote steps to the study of turbulence by instability in the vacuum, and other situations arising from the relationship between macroscopic and microscopic degrees of freedom
Mestrado
Física
Mestre em Física
147435/2014-5
CNPQ
Lallouet, Yoann. "Différents aspects de la physique nucléaire depuis les basses énergies jusqu'aux énergies intermédiaires". Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00660287.
Pełny tekst źródłaVijaya, Kumar T. "Stability of a weak confined wake behind a cylinder in fully developed turbulemt channel flow". Thesis, 2016. http://localhost:8080/xmlui/handle/12345678/7206.
Pełny tekst źródłaMandre, Shreyas. "Two studies in hydrodynamic stability : interfacial instabilities and applications of bounding theory". Thesis, 2006. http://hdl.handle.net/2429/18495.
Pełny tekst źródłaScience, Faculty of
Mathematics, Department of
Graduate
Joshi, Narasimha Ganapati. "Experimental investigations on the relevance of hydrodynamic stability theory to wall-turbulence". Thesis, 2011. http://localhost:8080/xmlui/handle/12345678/6782.
Pełny tekst źródłaKsiążki na temat "Hydrodynamic stability theory"
Georgescu, Adelina. Hydrodynamic stability theory. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-1814-1.
Pełny tekst źródłaHydrodynamic stability theory. Dordrecht: M. Nijhoff, 1985.
Znajdź pełny tekst źródła1957-, Jackson Thomas L., i Joslin R. D. 1963-, red. Theory and computation in hydrodynamic stability. Cambridge: Cambridge University Press, 2003.
Znajdź pełny tekst źródłaBaggett, Jeffrey S. Non-normal dynamics and hydrodynamic stability. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1996.
Znajdź pełny tekst źródłaRidha, Abid, Blaisdell Gregory A i Institute for Computer Applications in Science and Engineering., red. On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.
Znajdź pełny tekst źródłaThe linearization method in hydrodynamical stability theory. Providence, R.I: American Mathematical Society, 1989.
Znajdź pełny tekst źródłaIntroduction to Hamiltonian fluid dynamics and stability theory. Boca Raton: Chapman & Hall/CRC, 2000.
Znajdź pełny tekst źródłaLallemand, Pierre. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Znajdź pełny tekst źródłaGeorgescu, A. Hydrodynamic Stability Theory. Springer Verlag, 2010.
Znajdź pełny tekst źródłaGeorgescu, A. Hydrodynamic stability theory. Springer, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Hydrodynamic stability theory"
Georgescu, Adelina. "Classical Hydrodynamic Stability". W Hydrodynamic stability theory, 17–76. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-1814-1_2.
Pełny tekst źródłaGeorgescu, Adelina. "Introduction". W Hydrodynamic stability theory, 11–15. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-1814-1_1.
Pełny tekst źródłaGeorgescu, Adelina. "Generalized Solutions in Hydrodynamic Stability". W Hydrodynamic stability theory, 77–151. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-1814-1_3.
Pełny tekst źródłaGeorgescu, Adelina. "Branching and Stability of Solutions of the Navier-Stokes Equations". W Hydrodynamic stability theory, 152–211. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-1814-1_4.
Pełny tekst źródłaGeorgescu, Adelina. "Nature of Turbulence". W Hydrodynamic stability theory, 212–30. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-1814-1_5.
Pełny tekst źródłaGeorgescu, Adelina. "The Influence of the Presence of a Porous Medium on Hydrodynamic Stability". W Hydrodynamic stability theory, 231–47. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-017-1814-1_6.
Pełny tekst źródłaRoberts, P. H. "Concepts in Hydrodynamic Stability Theory". W Advances in Chemical Physics, 17–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470143841.ch3.
Pełny tekst źródłaMaschke, E. K. "Methods in Magneto-Hydrodynamic Stability Theory". W Waves and Instabilities in Plasmas, 91–116. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2700-1_3.
Pełny tekst źródłaHerron, Isom. "Hydrodynamic stability, differential operators and spectral theory". W DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 57–67. Providence, Rhode Island: American Mathematical Society, 1997. http://dx.doi.org/10.1090/dimacs/034/06.
Pełny tekst źródłaZudin, Yuri B. "Wall’s Thermal Effect on Hydrodynamic Flow Stability". W Theory of Periodic Conjugate Heat Transfer, 141–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21421-9_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Hydrodynamic stability theory"
Gajjar, Jitesh S. B. "Preface of the "Symposium on recent advances in theoretical fluid dynamics, hydrodynamic stability theory, and biological fluid mechanics"". W 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825470.
Pełny tekst źródłaWang, Tianying, Yanjun Zhou, Honglin Tang, Shihua Zhang i Haiqing Tian. "Effect of Geometric Parameters of New Semisubmersible Platform on Stability and Hydrodynamic Performance". W ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-63218.
Pełny tekst źródłaOmmani, Babak, i Odd M. Faltinsen. "Linear Dynamic Stability Analysis of a Surface Piercing Plate Advancing at High Forward Speed". W ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11136.
Pełny tekst źródłaGaleazzi, Roberto, Jelena Vidic-Perunovic, Mogens Blanke i Jo̸rgen Juncher Jensen. "Stability Analysis of the Parametric Roll Resonance Under Non-Constant Ship Speed". W ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59453.
Pełny tekst źródłaAngelou, Manolis, i Kostas J. Spyrou. "Towards a New Mathematical Model for Investigating Course Stability and Maneuvering Motions of Sailing Yachts". W SNAME 22nd Chesapeake Sailing Yacht Symposium. SNAME, 2016. http://dx.doi.org/10.5957/csys-2016-010.
Pełny tekst źródłaShiau, Ting Nung, Jon Li Hwang i Yuan Bin Chang. "A Study on Stability and Response Analysis of a Nonlinear Rotor System With Mass Unbalance and Side Load". W ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-007.
Pełny tekst źródłaLi, Yan, Zheng Liu, Yougang Tang, Xiyang Zhu i Ruoyu Zhang. "Dynamic Response of a Conceptual Designed Articulated Offshore Wind Turbine". W ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95635.
Pełny tekst źródłaZou, Z., Y. Zhang, X. Zhang i W. Tobler. "Simulation of Traction Drive Ratio Changes". W ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/ptg-14406.
Pełny tekst źródłaLin, Zaibin, Ling Qian, Michele Sergio Campobasso, Wei Bai, Yang Zhou i Zhihua Ma. "Modelling Aerodynamics of a Floating Offshore Wind Turbine Using the Overset Mesh Solver In OpenFOAM". W ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79230.
Pełny tekst źródłaHartmann, Hauke, Daniel Walia, Frank Adam, Uwe Ritschel i Jochen Großmann. "One Step Installation of a TLP Substructure: Requirements, Assumptions, Issues". W ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61424.
Pełny tekst źródłaRaporty organizacyjne na temat "Hydrodynamic stability theory"
Abdolmaleki, Kourosh. PR-453-134504-R05 On Bottom Stability Upgrade - MS III. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), listopad 2021. http://dx.doi.org/10.55274/r0012195.
Pełny tekst źródłaInc., Kellogg Brown and Root. L51989 Submarine Pipeline On-Bottom Stability-Volume 1-Analysis and Design Guidelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2002. http://dx.doi.org/10.55274/r0011168.
Pełny tekst źródłaAbdolmaleki, Kourosh, i Andrew Rawlinson. PR-453-134504-R01 Pipeline On-Bottom Stability Software Upgrade Milestone I. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 2016. http://dx.doi.org/10.55274/r0010867.
Pełny tekst źródłaRiveros, Guillermo, Felipe Acosta, Reena Patel i Wayne Hodo. Computational mechanics of the paddlefish rostrum. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/41860.
Pełny tekst źródła