Gotowa bibliografia na temat „Hydrodynamic and biokinetic modeling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hydrodynamic and biokinetic modeling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hydrodynamic and biokinetic modeling"
Huang, Chenfu, Anika Kuczynski, Martin T. Auer, David M. O’Donnell i Pengfei Xue. "Management Transition to the Great Lakes Nearshore: Insights from Hydrodynamic Modeling". Journal of Marine Science and Engineering 7, nr 5 (4.05.2019): 129. http://dx.doi.org/10.3390/jmse7050129.
Pełny tekst źródłaOrtiz, Antonio, Rubén Díez-Montero, Joan García, Nadeem Khalil i Enrica Uggetti. "Advanced biokinetic and hydrodynamic modelling to support and optimize the design of full-scale high rate algal ponds". Computational and Structural Biotechnology Journal 20 (2022): 386–98. http://dx.doi.org/10.1016/j.csbj.2021.12.034.
Pełny tekst źródłaZeng, Ming, Audrey Soric i Nicolas Roche. "Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions". Bioresource Technology 144 (wrzesień 2013): 202–9. http://dx.doi.org/10.1016/j.biortech.2013.06.111.
Pełny tekst źródłaXu, Qi, Yanlei Wan, Qiongxiang Wu, Keke Xiao, Wenbo Yu, Sha Liang, Yuwei Zhu i in. "An efficient hydrodynamic-biokinetic model for the optimization of operational strategy applied in a full-scale oxidation ditch by CFD integrated with ASM2". Water Research 193 (kwiecień 2021): 116888. http://dx.doi.org/10.1016/j.watres.2021.116888.
Pełny tekst źródłaBoltz, Joshua P., Bruce R. Johnson, Imre Takács, Glen T. Daigger, Eberhard Morgenroth, Doris Brockmann, Róbert Kovács, Jason M. Calhoun, Jean-Marc Choubert i Nicolas Derlon. "Biofilm carrier migration model describes reactor performance". Water Science and Technology 75, nr 12 (17.03.2017): 2818–28. http://dx.doi.org/10.2166/wst.2017.160.
Pełny tekst źródłaYang, Jixiang, Yanqing Yang, Xin Ji, Youpeng Chen, Jinsong Guo i Fang Fang. "Three-Dimensional Modeling of Hydrodynamics and Biokinetics in EGSB Reactor". Journal of Chemistry 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/635281.
Pełny tekst źródłaMeister, Michael, Daniel Winkler, Massoud Rezavand i Wolfgang Rauch. "Integrating hydrodynamics and biokinetics in wastewater treatment modelling by using smoothed particle hydrodynamics". Computers & Chemical Engineering 99 (kwiecień 2017): 1–12. http://dx.doi.org/10.1016/j.compchemeng.2016.12.020.
Pełny tekst źródłaMeister, Michael, i Wolfgang Rauch. "Modelling aerated flows with smoothed particle hydrodynamics". Journal of Hydroinformatics 17, nr 4 (9.03.2015): 493–504. http://dx.doi.org/10.2166/hydro.2015.132.
Pełny tekst źródłaPrades, L., A. D. Dorado, J. Climent, X. Guimerà, S. Chiva i X. Gamisans. "CFD modeling of a fixed-bed biofilm reactor coupling hydrodynamics and biokinetics". Chemical Engineering Journal 313 (kwiecień 2017): 680–92. http://dx.doi.org/10.1016/j.cej.2016.12.107.
Pełny tekst źródłaBlaauboer, Bas J. "Biokinetic Modeling andin Vitro–in VivoExtrapolations". Journal of Toxicology and Environmental Health, Part B 13, nr 2-4 (17.06.2010): 242–52. http://dx.doi.org/10.1080/10937404.2010.483940.
Pełny tekst źródłaRozprawy doktorskie na temat "Hydrodynamic and biokinetic modeling"
Vink, J. S. "Discussion: Hydrodynamic modeling". Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1804/.
Pełny tekst źródłaNzokou, Tanekou François. "Ice rupture hydrodynamic modeling". Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26683/26683.pdf.
Pełny tekst źródłaMarchand, Philippe. "Hydrodynamic modeling of shallow basins". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0003/MQ44218.pdf.
Pełny tekst źródłaMarchand, Philippe 1972. "Hydrodynamic modeling of shallow basins". Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20274.
Pełny tekst źródłaMeakin, Casey Adam. "Hydrodynamic Modeling of Massive Star Interiors". Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/194035.
Pełny tekst źródłaSherburn, Jesse Andrew. "HYDRODYNAMIC MODELING OF IMPACT CRATERS IN ICE". MSSTATE, 2008. http://sun.library.msstate.edu/ETD-db/theses/available/etd-11052007-091023/.
Pełny tekst źródłaLuca, Liliana. "Hydrodynamic modeling of electron transport in graphene". Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4103.
Pełny tekst źródłaEriksson, Jonas. "Evaluation of SPH for hydrodynamic modeling,using DualSPHysics". Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-339557.
Pełny tekst źródłaEsmond, Micah Jeshurun. "Two-dimensional, Hydrodynamic Modeling of Electrothermal Plasma Discharges". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81447.
Pełny tekst źródłaPh. D.
MEGGIOLARO, MARCO ANTONIO. "HYDRODYNAMIC BEARING MODELING FOR THE SIMULATION OF ROTATING SYSTEMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19287@1.
Pełny tekst źródłaNeste trabalho a análise do comportamento de sistemas rotativos do tipo eixo-rotormancal é estendida para incluir os efeitos da presença de mancais hidrodinâmicos na resposta dinâmica. Estes efeitos estão associados à não-linearidade da força de reação exercida pelos suportes sobre o eixo e dependem dos deslocamentos, velocidades transversais e da rotação própia do rotor. A modelagem estrutural do sistema é obtida empregando-se o método dos elementos finitos. O eixo é representado pelo modelo de viga de Timoshenko com dois nós, quatro graus-de-liberdade por nó, e a interpolação do campo de deslocamentos é obtida utilizando-se as funções de Hermite. Os rotores são modelados empregando-se elementos de inércia concentrada associada aos graus-de-liberdade de um ponto nodal do modelo. E, na representação dos mancais hidrodinâmicos utilizou-se a equação de Reynolds, com as hipóteses simplificadoras para mancais curtos, obtendo-se a solução para a distribuição de pressão do filme de óleo em forma fechada. Essa distribuição de pressão permite a obtenção dos coeficientes das matrizes e rigidez e de amortecimento associadas aos graus de liberdade do eixo no ponto nodal de representação do mancal. Para a integração temporal do sistema de equações diferencias utiliza-se o procedimento passo-a-passo, tendo-se implementado os métodos implícitos de Newmark e Wilson – teta, na forma incondicionalmente estável. Devido à não-linearidade das equações obtidas com a presença dos mancais hidrodinâmicos, em cada intervalo de tempo utiliza-se o procedimento de Newton-Raphson modificado para a correção da solução numérica obtida com outros resultados analíticos/numéricos disponíveis na literatura. Também, uma representação numérica para mancais hidrodinâmicos segmentados é apresentada, utilizando-se o desenvolvimento teórico para mancais simples. Neste caso a avaliação do procedimento numérico é fornecida comparando-se a solução numérica com resultados experimentais obtidos dos rotores de usina hidrogenada avaliada pelo CEPEL. Em ambos os procedimentos o rotor idealizado de jeffcott é empregado no estudo de casos. Verifica-se que os principais resultados associados aos efeitos da precessão auto-excitada (oil whirl), de chicoteamento (oil whip), e da estabilização dinâmica do sistema são reproduzidos pelos modelos numéricos utilizados.
In this work a formulation for the analysis of shaft-rotor-bearing type rotating systems is extendend to accommodate the effects of hydrodynamic bearings in its dynamic response. These effects, which are associated to the nonlinear force on the shaft at the bearings, are dependent of the transverse displacements, transverse linear velocities an the angular veolicty of the shaft. The structure behavior is modeled by employing the finite element method. The shaft is represented by the two node timoshenko model for bearns, with four desgrees-of-freedom per node and Hermite interpolation functions to represent the displacement fields along the bearn axis. Rotors are modeled by using concentrated inertia elements associated to the shaft degrees-of-freedom at the bearing nodal point. In the numerical analysis considering the time integration of the system differential equation, a step-by-step procedure was employed with the newmark technique in this unconditionally stable form. Due to the nonlearities associated with the hydrodynamic bearings, the solution of the system of equations is obtained using a modified Newton-Raphson precedure at each time step for solution convergence. In the evaluation of the proposed computacional system, comparison with solutions obtained from analytical/numerical results available in the literature are used. Also, a numeric represemtation of tilting-pad bearings is presented using the theory for plain journal bearings, under the same simplified conditions. In this case an evaluation of the numerical procedure is given by comparing calculated solutions with experimental results obtained from the evaluation of a hydrogenaration plant provided by CEPEL-Brazilian Research Center For Eletrobras. In both plain an tilting-pad journal bearing numerical procedures, the idealized Jeffcott rotor is employed as a case study for different operating conditions. As a result, it is shown that the solutions associated to the main oil whirl and oil whip effects and afterwards dynamic stabilization are represented by the proposed numerical procedures employed.
Książki na temat "Hydrodynamic and biokinetic modeling"
Shirer, Hampton N., red. Nonlinear Hydrodynamic Modeling: A Mathematical Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17557-1.
Pełny tekst źródłaN, Shirer Hampton, red. Nonlinear hydrodynamic modeling: A mathematical introduction. Berlin: Springer-Verlag, 1987.
Znajdź pełny tekst źródłaShirer, Hampton N. Nonlinear Hydrodynamic Modeling: A Mathematical Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.
Znajdź pełny tekst źródłaConstructive modeling of structural turbulence and hydrodynamic instabilities. New Jersey: World Scientific, 2009.
Znajdź pełny tekst źródłaBelot︠s︡erkovskiĭ, O. M. Constructive modeling of structural turbulence and hydrodynamic instabilities. New Jersey: World Scientific, 2009.
Znajdź pełny tekst źródłaBelot͡serkovskiĭ, O. M. Constructive modeling of structural turbulence and hydrodynamic instabilities. New Jersey: World Scientific, 2009.
Znajdź pełny tekst źródłaGeiger, Sam R. Hydrodynamic modeling of towed buoyant submarine antenna's in multidirectional seas. Springfield, Va: Available from National Technical Information Service, 2000.
Znajdź pełny tekst źródłaPeng, Jian. An integrated geochemical and hydrodynamic model for tidal coastal environments. Los Angeles, CA: University of Southern California, 2006.
Znajdź pełny tekst źródłaMeasurement of soil-borne lead bioavailability in human adults, and its application in biokinetic modeling. [New York]: [Columbia University], 1998.
Znajdź pełny tekst źródłaRahmani, M. Hydrodynamic modeling of corrosion of carbon steels and cast irons in sulfuric acid. Houston, TX: Published for the Materials Technology Institute of the Chemical Process Industries by the National Association of Corrosion Engineers, 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Hydrodynamic and biokinetic modeling"
Hargrove, James L. "The Biokinetic Database". W Dynamic Modeling in the Health Sciences, 270–75. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1644-5_26.
Pełny tekst źródłaSinclair, Jennifer L. "Hydrodynamic modeling". W Circulating Fluidized Beds, 149–80. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0095-0_5.
Pełny tekst źródłaUrsegov, Stanislav, i Armen Zakharian. "Adaptive Hydrodynamic Modeling". W Adaptive Approach to Petroleum Reservoir Simulation, 51–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67474-8_6.
Pełny tekst źródłaHagler, Gina. "Hydrodynamic Theorists". W Modeling Ships and Space Craft, 65–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4596-8_4.
Pełny tekst źródłaTannenbaum, Lawrence V. "Validate Biokinetic Uptake Modeling for Freshwater Fish". W Ecological Risk Assessment, 91–96. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781351261289-14.
Pełny tekst źródłaRichards, R. G., i D. G. Torr. "Hydrodynamic models of the plasmasphere". W Modeling Magnetospheric Plasma, 67–77. Washington, D. C.: American Geophysical Union, 1988. http://dx.doi.org/10.1029/gm044p0067.
Pełny tekst źródłaYoshizawa, Akira. "Conventional Turbulence Modeling". W Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 83–144. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_4.
Pełny tekst źródłaYoshizawa, Akira. "Subgrid-Scale Modeling". W Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 145–72. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_5.
Pełny tekst źródłaYoshizawa, Akira. "Compressible Turbulence Modeling". W Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 265–303. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_8.
Pełny tekst źródłaYoshizawa, Akira. "Magnetohydrodynamic Turbulence Modeling". W Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 305–69. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Hydrodynamic and biokinetic modeling"
Harries, Stefan, Claus Abt i Hochkirch Hochkirch. "Hydrodynamic Modeling of Sailing Yachts". W SNAME 15th Chesapeake Sailing Yacht Symposium. SNAME, 2001. http://dx.doi.org/10.5957/csys-2001-005.
Pełny tekst źródłaTamsalu, R., S. Ovsienko i V. Zalesny. "Hydrodynamic-oil spill modeling forecasting system". W 2008 IEEE/OES US/EU-Baltic International Symposium (BALTIC). IEEE, 2008. http://dx.doi.org/10.1109/baltic.2008.4625528.
Pełny tekst źródłaXu, Aiguo, Yudong Zhang, Feng Chen, Yanbiao Gan, Huilin Lai i Chuandong Lin. "Discrete Boltzmann Modeling of Hydrodynamic Instability". W Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0042-cd.
Pełny tekst źródłaLiu, Yun, i Hong-da Shi. "Hydrodynamic Modeling of Port Container Logistics". W First International Conference on Transportation Engineering. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40932(246)206.
Pełny tekst źródłaWang, Lu, Jason Jonkman, Greg Hayman, Andy Platt, Bonnie Jonkman i Amy Robertson. "Recent Hydrodynamic Modeling Enhancements in OpenFAST". W ASME 2022 4th International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iowtc2022-98094.
Pełny tekst źródłaNarozhny, Boris. "Hydrodynamic approach to electronic transport". W LOW-DIMENSIONAL MATERIALS: THEORY, MODELING, EXPERIMENT, DUBNA 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0098950.
Pełny tekst źródłade Soria, María Isabel García, Pablo Maynar, Gregory Schehr, Alain Barrat, Emmanuel Trizac, Joaquín Marro, Pedro L. Garrido i Pablo I. Hurtado. "Hydrodynamic description for ballistic annihilation systems". W MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082280.
Pełny tekst źródłaBennecib, N., D. Kerdoun i M. Madaci. "Modeling of a magneto-hydrodynamic DC pump". W 2013 International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). IEEE, 2013. http://dx.doi.org/10.1109/taeece.2013.6557344.
Pełny tekst źródłaLiu, Xiyan, Xulong Yuan, Kai Luo, Cheng Chen i Xiaobin Qi. "Hydrodynamic Force Modeling of an Irregular Body". W OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018. http://dx.doi.org/10.1109/oceans.2018.8604618.
Pełny tekst źródłaDoiphode, P. "Magneto-hydrodynamic modeling of gas discharge switches". W BEAMS 2002: 14th International Conference on High-Power Particle Beams. AIP, 2002. http://dx.doi.org/10.1063/1.1530898.
Pełny tekst źródłaRaporty organizacyjne na temat "Hydrodynamic and biokinetic modeling"
Walker, David T., Ales Alajbegovic i Jason D. Hunt. Hydrodynamic Modeling for Stationary Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2004. http://dx.doi.org/10.21236/ada427960.
Pełny tekst źródłaWang, P. F., C. N. Katz, D. B. Chadwick i R. Barua. Hydrodynamic Modeling of Diego Garcia Lagoon. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2014. http://dx.doi.org/10.21236/ada611456.
Pełny tekst źródłaKnight, Earl E., i Esteban Rougier. Current SPE Hydrodynamic Modeling and Path Forward. Office of Scientific and Technical Information (OSTI), sierpień 2012. http://dx.doi.org/10.2172/1048858.
Pełny tekst źródłaLeggett, Richard Wayne, Keith F. Eckerman, Wilson McGinn i Dr Robert A. Meck. Controlling intake of uranium in the workplace: Applications of biokinetic modeling and occupational monitoring data. Office of Scientific and Technical Information (OSTI), styczeń 2012. http://dx.doi.org/10.2172/1034382.
Pełny tekst źródłaClark, D. S. Modeling Hydrodynamic Instabilities and Mix in National Ignition Facility Hohlraums. Office of Scientific and Technical Information (OSTI), październik 2019. http://dx.doi.org/10.2172/1572235.
Pełny tekst źródłaRocheleau, Greg. Predicting Performance of Macroalgae Farms with Hydrodynamic and Biological Modeling. Office of Scientific and Technical Information (OSTI), luty 2022. http://dx.doi.org/10.2172/1846625.
Pełny tekst źródłaDieffenbach, Payson Coy, i Joshua Eugene Coleman. Diagnostic development and hydrodynamic modeling of warm dense plasmas at DARHT. Office of Scientific and Technical Information (OSTI), sierpień 2018. http://dx.doi.org/10.2172/1467297.
Pełny tekst źródłaLackey, Tahirih, Susan Bailey, Joseph Gailani, Sung-Chan Kim i Paul Schroeder. Hydrodynamic and sediment transport modeling for James River dredged material management. Engineer Research and Development Center (U.S.), wrzesień 2020. http://dx.doi.org/10.21079/11681/38255.
Pełny tekst źródłaYang, Zhaoqing, i Taiping Wang. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington. Office of Scientific and Technical Information (OSTI), grudzień 2010. http://dx.doi.org/10.2172/1004544.
Pełny tekst źródłaCoffing, Shane. Modeling Hydrodynamic Instabilities, Shocks, and Radiation Waves in High Energy Density Experiments. Office of Scientific and Technical Information (OSTI), styczeń 2023. http://dx.doi.org/10.2172/1922742.
Pełny tekst źródła