Gotowa bibliografia na temat „HYDRAULICS JUMP”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HYDRAULICS JUMP”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "HYDRAULICS JUMP"
Heller, Valentin, Willi H. Hager i Hans-Erwin Minor. "Ski Jump Hydraulics". Journal of Hydraulic Engineering 131, nr 5 (maj 2005): 347–55. http://dx.doi.org/10.1061/(asce)0733-9429(2005)131:5(347).
Pełny tekst źródłaSteiner, Remo, Valentin Heller, Willi H. Hager i Hans-Erwin Minor. "Deflector Ski Jump Hydraulics". Journal of Hydraulic Engineering 134, nr 5 (maj 2008): 562–71. http://dx.doi.org/10.1061/(asce)0733-9429(2008)134:5(562).
Pełny tekst źródłaHotchkiss, Rollin H., Patrick J. Flanagan i Kevin Donahoo. "Hydraulic Jumps in Broken-Back Culverts". Transportation Research Record: Journal of the Transportation Research Board 1851, nr 1 (styczeń 2003): 35–44. http://dx.doi.org/10.3141/1851-04.
Pełny tekst źródłaHager, Willi H. "Classical hydraulic jump: free surface profile". Canadian Journal of Civil Engineering 20, nr 3 (1.06.1993): 536–39. http://dx.doi.org/10.1139/l93-068.
Pełny tekst źródłaBayon-Barrachina, Arnau, i Petra Amparo Lopez-Jimenez. "Numerical analysis of hydraulic jumps using OpenFOAM". Journal of Hydroinformatics 17, nr 4 (13.03.2015): 662–78. http://dx.doi.org/10.2166/hydro.2015.041.
Pełny tekst źródłaLauria, Agostino, i Giancarlo Alfonsi. "Numerical Investigation of Ski Jump Hydraulics". Journal of Hydraulic Engineering 146, nr 4 (kwiecień 2020): 04020012. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0001718.
Pełny tekst źródłaGodo, Anna M., i J. A. McCorquodale. "Effect of diurnal temperature variation on the hydraulics of clarifiers". Canadian Journal of Civil Engineering 18, nr 6 (1.12.1991): 1084–87. http://dx.doi.org/10.1139/l91-131.
Pełny tekst źródłaDermawan, V., D. R. Dermawan, M. J. Ismoyo i P. H. Wicaksono. "Investigation Of Hydraulic Flow Characteristics On Drop Structures". IOP Conference Series: Earth and Environmental Science 930, nr 1 (1.12.2021): 012028. http://dx.doi.org/10.1088/1755-1315/930/1/012028.
Pełny tekst źródłaStojnic, Ivan, Michael Pfister, Jorge Matos i Anton J. Schleiss. "Plain Stilling Basin Performance below 30° and 50° Inclined Smooth and Stepped Chutes". Water 14, nr 23 (6.12.2022): 3976. http://dx.doi.org/10.3390/w14233976.
Pełny tekst źródłaGama, Italon Rilson Vicente, André Luiz Andrade Simões, Harry Edmar Schulz i Rodrigo De Melo Porto. "CÓDIGO LIVRE PARA SOLUÇÃO NUMÉRICA DAS EQUAÇÕES DE SAINT-VENANT EM CANAIS TRAPEZOIDAIS ASSIMÉTRICOS". Revista Eletrônica de Gestão e Tecnologias Ambientais 8, nr 2 (24.12.2020): 145. http://dx.doi.org/10.9771/gesta.v8i2.38913.
Pełny tekst źródłaRozprawy doktorskie na temat "HYDRAULICS JUMP"
Gan, Jianping 1962. "Internal hydraulics, solutions and associated mixing in a stratified sound". Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60021.
Pełny tekst źródłaTabatabaian, M. (Mehrzad). "Depth-averaged recirculating flow in a square depth". Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65441.
Pełny tekst źródłaHadjerioua, Boualem 1957. "Behavior of hydraulic jump basins". Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/291709.
Pełny tekst źródłaSimsek, Cagdas. "Forced Hydraulic Jump On Artificially Roughened Beds". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608038/index.pdf.
Pełny tekst źródłaEvcimen, Taylan Ulas. "The Effect Of Prismatic Roughness Elemnts On Hydraulic Jump". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605792/index.pdf.
Pełny tekst źródłaEvcimen, Taylan Ulas. "Effect Of Prismatic Roughness On Hydraulic Jump In Trapezoidal Channels". Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614467/index.pdf.
Pełny tekst źródłaOgden, Kelly Anne. "Internal hydraulic jumps with upstream shear". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109055.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 233-237).
Internal hydraulic jumps in flows with upstream shear are investigated numerically and theoretically. The role of upstream shear has not previously been thoroughly investigated, although it is important in many oceanographic flows such as exchange flows and stratified flow over topography. Several two-layer shock joining theories, characterized by their distribution of dissipation in the jump, are considered and extended to include upstream shear, entrainment, and topography. Theoretical results are also compared to 2D and some 3D numerical simulations of the full Navier-Stokes equations, which allow continuous velocity and density distributions. The solution space of idealized jumps with small upstream shear is identified using two-layer theories, which shows that upstream shear allows larger jumps to form and allows jumps for a larger range of parameters. Numerical simulations reveal several jump structures that can occur in these flows, including an undular bore, a fully turbulent jump, and a smooth front turbulent jump. At low shear, the 2D mixing efficiency is constant across simulations. As shear increases, the basic two-layer theories no longer provide solutions. Numerical simulations show that entrainment becomes significant as the shear increases, and adding entrainment and shape parameters to describe the continuous velocity profiles is required to accurately describe the simulations using two-layered theory. The entrainment depends on the upstream shear and can be predicted with a modified theory. However, use of the theory is limited due to its sensitivity to the value of the shape parameters. The 2D mixing efficiency also decreases significantly as shear increases. Finally, more realistic 2D and some 3D simulations including topography bridge the gap between the highly idealized simulations and the very realistic work of others. Simulations with topography show additional jump types, including a higher mode jump with a wedge of homogeneous, stagnant fluid similar to a structure seen in Knight Inlet. In all cases, numerical simulations are used to identify trends in the mixing and jumps structures that can occur in internal hydraulic jumps.
by Kelly Anne Ogden.
Ph. D.
MacDonald, R. G. "Flow and sediment transport at hydraulic jumps". Thesis, University of East Anglia, 2010. https://ueaeprints.uea.ac.uk/20506/.
Pełny tekst źródłaLarson, Emily Anne. "Energy dissipation in culverts by forcing a hydraulic jump at the outlet". Online access for everyone, 2004. http://www.dissertations.wsu.edu/Thesis/Summer2004/e%5Flarson%5F081604.pdf.
Pełny tekst źródłaTHIN, THWE THWE. "FUNDAMENTAL STUDY ON UNDULAR AND DISCONTINUOUS HYDRAULIC JUMPS BY MEANS OF ASIMPLIFIED MOMENTUM EQUATION". Kyoto University, 2020. http://hdl.handle.net/2433/259024.
Pełny tekst źródłaKsiążki na temat "HYDRAULICS JUMP"
Hager, Willi H. Energy Dissipators and Hydraulic Jump. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9.
Pełny tekst źródłaHager, Willi H. Energy dissipators and hydraulic jump. Dordrecht: Kluwer Academic, 1992.
Znajdź pełny tekst źródłaDodge, R. A. Model study of Roosevelt Diversion Weir. Denver, Colo: Hydraulics Branch, Resesarch and Laboratory Services Division, Denver Office, U.S. Dept. of Interior, Bureau of Reclamation, 1989.
Znajdź pełny tekst źródłaGumkowski, Stanisław. Hydrodynamika i wymiana ciepła warstw cieczy powstałych na powierzchni ciała stałego z uderzających strug. Gdańsk: Wydawn. Politechniki Gdańskiej, 2007.
Znajdź pełny tekst źródłaFan, Jerry Jie. Submerged hydraulic jumps at overflow structures. Ottawa: National Library of Canada, 1993.
Znajdź pełny tekst źródła1968-, Liu Yakun, red. Ji bo, shui yue, die shui, xiao neng: Shock wave, hydraulic jump, plunge, energy dissipation. Dalian Shi: Dalian li gong da xue chu ban she, 2008.
Znajdź pełny tekst źródłaBerger, Rutherford C. A finite element scheme for shock capturing. Vicksburg, Miss: U.S. Army Corps of Engineers, Waterways Experiment Station, 1993.
Znajdź pełny tekst źródłaGunal, M. R. Numerical and experimental investigations of hydraulic jumps. Manchester: UMIST, 1996.
Znajdź pełny tekst źródłaKlumpp, Cassie C. Union Avenue Dam boatchute study. Denver, Colo: Hydraulics Branch, Resesarch and Laboratory Services Division, Denver Office, U.S. Dept. of the Interior, Bureau of Reclamation, 1989.
Znajdź pełny tekst źródłaAvedisian, C. T. The circular hydraulic jump in microgravity: Final report, Microgravity Science and Applications Division, Fluid Physics Program : NASA grant NAG 3-1627 : period--June 24, 1994 to June 23, 1996. [Washington, DC: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "HYDRAULICS JUMP"
Hager, Willi H. "Hydraulic Jump and Stilling Basins". W Wastewater Hydraulics, 174–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11383-3_7.
Pełny tekst źródłaRamarao, Vankayalapati S., i M. R. Bhajantri. "Modification of Spillway Ski Jump Bucket Subjected to Higher Tail Water Levels". W River Hydraulics, 181–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81768-8_15.
Pełny tekst źródłaKucukali, Serhat, i Sevket Cokgor. "An Experimental Investigation of Reaeration and Energy Dissipation in Hydraulic Jump". W Recent Trends in Environmental Hydraulics, 127–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37105-0_11.
Pełny tekst źródłaHager, Willi H. "Classical Hydraulic Jump". W Energy Dissipators and Hydraulic Jump, 5–40. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_2.
Pełny tekst źródłaHager, Willi H. "Sloping Jump". W Energy Dissipators and Hydraulic Jump, 41–52. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_3.
Pełny tekst źródłaHager, Willi H., Anton J. Schleiss, Robert M. Boes i Michael Pfister. "Ski jump and plunge pool". W Hydraulic Engineering of Dams, 407–544. London, UK : CRC Press/Balkema is an imprint of the Taylor & Francis Group, an Informa Business, [2019] | Series: Technology—hydraulic engineering: CRC Press, 2020. http://dx.doi.org/10.1201/9780203771433-6.
Pełny tekst źródłaHager, Willi H. "Introduction". W Energy Dissipators and Hydraulic Jump, 1–4. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_1.
Pełny tekst źródłaHager, Willi H. "Expanding Channel". W Energy Dissipators and Hydraulic Jump, 151–74. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_10.
Pełny tekst źródłaHager, Willi H. "Bucket-Type Energy Dissipator". W Energy Dissipators and Hydraulic Jump, 175–84. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_11.
Pełny tekst źródłaHager, Willi H. "Various Aspects of Stilling Basins". W Energy Dissipators and Hydraulic Jump, 185–212. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-8048-9_12.
Pełny tekst źródłaStreszczenia konferencji na temat "HYDRAULICS JUMP"
Pineda, Saira F., Armando J. Blanco i Luis Rojas-Solo´rzano. "CFD Software Applications for Transcritical Free Surface Flow". W ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78075.
Pełny tekst źródłaMouaze, D., F. Murzyn i J. R. Chaplin. "Turbulence at Free Surface in Hydraulic Jumps". W ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56077.
Pełny tekst źródłaMcDuffee, Joel L. "Heat Transfer Through Small Moveable Gas Gaps in a Multi-Body System Using the ANSYS Finite Element Software". W ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17783.
Pełny tekst źródłaJohnson, M., D. Maynes, J. C. Vanderhoff i B. W. Webb. "Hydraulic Jump due to Jet Impingement on Micro-Patterned Surfaces Exhibiting Ribs and Cavities". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89104.
Pełny tekst źródłaGandhi, S., i R. P. Singh. "Hydraulic jump characteristics in non-prismatic channels". W 5th IAHR International Symposium on Hydraulic Structures. The University of Queensland, 2014. http://dx.doi.org/10.14264/uql.2014.14.
Pełny tekst źródłaKucukali, S., i S. Cokgor. "Aeration Performance of a Hydraulic Jump". W World Environmental and Water Resources Congress 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40856(200)104.
Pełny tekst źródłaRolley, Étienne, Claude Guthmann, Michael S. Pettersen i Christophe Chevallier. "The Hydraulic Jump in Liquid Helium". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354642.
Pełny tekst źródłaDiVall, Megan R., i Theodore J. Heindel. "X-Ray Flow Visualization of a Circular Hydraulic Jump". W ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78035.
Pełny tekst źródłaChampagne, T. M., i B. D. Barkdoll. "Oscillating Hydraulic Jump in a Stilling Basin". W World Environmental and Water Resources Congress 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479162.164.
Pełny tekst źródłaKimiaghalam, M., i M. Passandideh-Fard. "A Numerical Study on Flow Characteristics of 2D Vertical Liquid Jet Striking a Horizontal Surface". W ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-25136.
Pełny tekst źródłaRaporty organizacyjne na temat "HYDRAULICS JUMP"
Chanson, Hubert, i G. L. Qiao. Air Bubble Entrainment and Gas Transfer at Hydraulic Jumps. Brisbane, Australia: The University of Queensland, Department of Civil Engineering, sierpień 1994. http://dx.doi.org/10.14264/9043.
Pełny tekst źródłaChanson, Hubert. Air Bubble Entrainment in Hydraulic Jumps: Similitude and Scale Effects. The University of Queensland, Department of Civil Engineering, styczeń 2006. http://dx.doi.org/10.14264/8723.
Pełny tekst źródłaRussell, H. A. J., i R. W. C. Arnott. Hydraulic-jump and hyperconcentrated-flow deposits of a glacigenic subaqueous fan: Oak Ridges Moraine, southern Ontario, Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2003. http://dx.doi.org/10.4095/213504.
Pełny tekst źródłaEstrella, Jorge, Davide Wuthrich i Hubert Chanson. Two-phase air-water flow properties in hydraulic jump at low froude number: Scale effects in physical modelling. The University of Queensland, luty 2021. http://dx.doi.org/10.14264/b6bf13f.
Pełny tekst źródłaRussell, H. A. J., i R. W. C. Arnott. Stratigraphic evidence for supercritical flow and hydraulic jump conditions in a subaqueous fan succession, Oak Ridges Moraine (Pleistocene), southern Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/216707.
Pełny tekst źródłaChanson, Hubert. Advective Diffusion of Air Bubbles in Hydraulic Jumps with Large Froude Numbers: an Experimental Study. School of Civil Engineering, The University of Queensland, październik 2009. http://dx.doi.org/10.14264/187625.
Pełny tekst źródła