Gotowa bibliografia na temat „HYBRID RESAMPLING”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HYBRID RESAMPLING”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "HYBRID RESAMPLING"

1

Arun, Pattathal V., i Sunil K. Katiyar. "A CNN based Hybrid approach towards automatic image registration". Geodesy and Cartography 62, nr 1 (1.06.2013): 33–49. http://dx.doi.org/10.2478/geocart-2013-0005.

Pełny tekst źródła
Streszczenie:
Abstract Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we propose a framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as Vector Machines, Cellular Neural Network (CNN), SIFT, coreset, and Cellular Automata. CNN has found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using corset optimization The salient features of this work are cellular neural network approach based SIFT feature point optimisation, adaptive resampling and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. System has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
Style APA, Harvard, Vancouver, ISO itp.
2

Arun, Pattathal Vijayakumar. "A CNN BASED HYBRID APPROACH TOWARDS AUTOMATIC IMAGE REGISTRATION". Geodesy and Cartography 39, nr 3 (26.09.2013): 121–28. http://dx.doi.org/10.3846/20296991.2013.840409.

Pełny tekst źródła
Streszczenie:
Image registration is a key component of spatial analyses that involve different data sets of the same area. Automatic approaches in this domain have witnessed the application of several intelligent methodologies over the past decade; however accuracy of these approaches have been limited due to the inability to properly model shape as well as contextual information. In this paper, we investigate the possibility of an evolutionary computing based framework towards automatic image registration. Cellular Neural Network has been found to be effective in improving feature matching as well as resampling stages of registration, and complexity of the approach has been considerably reduced using corset optimization. CNN-prolog based approach has been adopted to dynamically use spectral and spatial information for representing contextual knowledge. The salient features of this work are feature point optimisation, adaptive resampling and intelligent object modelling. Investigations over various satellite images revealed that considerable success has been achieved with the procedure. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
Style APA, Harvard, Vancouver, ISO itp.
3

Zafar, Taimoor, Tariq Mairaj, Anzar Alam i Haroon Rasheed. "Hybrid resampling scheme for particle filter-based inversion". IET Science, Measurement & Technology 14, nr 4 (1.06.2020): 396–406. http://dx.doi.org/10.1049/iet-smt.2018.5531.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Jentsch, Carsten, i Jens-Peter Kreiss. "The multiple hybrid bootstrap — Resampling multivariate linear processes". Journal of Multivariate Analysis 101, nr 10 (listopad 2010): 2320–45. http://dx.doi.org/10.1016/j.jmva.2010.06.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lee, Ernesto, Furqan Rustam, Wajdi Aljedaani, Abid Ishaq, Vaibhav Rupapara i Imran Ashraf. "Predicting Pulsars from Imbalanced Dataset with Hybrid Resampling Approach". Advances in Astronomy 2021 (3.12.2021): 1–13. http://dx.doi.org/10.1155/2021/4916494.

Pełny tekst źródła
Streszczenie:
Pulsar stars, usually neutron stars, are spherical and compact objects containing a large quantity of mass. Each pulsar star possesses a magnetic field and emits a slightly different pattern of electromagnetic radiation which is used to identify the potential candidates for a real pulsar star. Pulsar stars are considered an important cosmic phenomenon, and scientists use them to study nuclear physics, gravitational waves, and collisions between black holes. Defining the process of automatic detection of pulsar stars can accelerate the study of pulsar stars by scientists. This study contrives an accurate and efficient approach for true pulsar detection using supervised machine learning. For experiments, the high time-resolution (HTRU2) dataset is used in this study. To resolve the data imbalance problem and overcome model overfitting, a hybrid resampling approach is presented in this study. Experiments are performed with imbalanced and balanced datasets using well-known machine learning algorithms. Results demonstrate that the proposed hybrid resampling approach proves highly influential to avoid model overfitting and increase the prediction accuracy. With the proposed hybrid resampling approach, the extra tree classifier achieves a 0.993 accuracy score for true pulsar star prediction.
Style APA, Harvard, Vancouver, ISO itp.
6

Saputro, Dewi Retno Sari, Sulistyaningsih Sulistyaningsih i Purnami Widyaningsih. "SPATIAL AUTOREGRESSIVE (SAR) MODEL WITH ENSEMBLE LEARNING-MULTIPLICATIVE NOISE WITH LOGNORMAL DISTRIBUTION (CASE ON POVERTY DATA IN EAST JAVA)". MEDIA STATISTIKA 14, nr 1 (22.06.2021): 89–97. http://dx.doi.org/10.14710/medstat.14.1.89-97.

Pełny tekst źródła
Streszczenie:
The regression model that can be used to model spatial data is Spatial Autoregressive (SAR) model. The level of accuracy of the estimated parameters of the SAR model can be improved, especially to provide better results and can reduce the error rate by resampling method. Resampling is done by adding noise (noise) to the data using Ensemble Learning (EL) with multiplicative noise. The research objective is to estimate the parameters of the SAR model using EL with multiplicative noise. In this research was also applied a spatial regression model of the ensemble non-hybrid multiplicative noise which has a lognormal distribution of cases on poverty data in East Java in 2016. The results showed that the estimated value of the non-hybrid spatial ensemble spatial regression model with multiplicative noise with a lognormal distribution was obtained from the average parameter estimation of 10 Spatial Error Model (SEM) resulting from resampling. The multiplicative noise used is generated from lognormal distributions with an average of one and a standard deviation of 0.433. The Root Mean Squared Error (RMSE) value generated by the non-hybrid spatial ensemble regression model with multiplicative noise with a lognormal distribution is 22.99.
Style APA, Harvard, Vancouver, ISO itp.
7

Abdullahi, Dauda Sani, Dr Muhammad Sirajo Aliyu i Usman Musa Abdullahi. "Comparative analysis of resampling algorithms in the prediction of stroke diseases". UMYU Scientifica 2, nr 1 (30.03.2023): 88–94. http://dx.doi.org/10.56919/usci.2123.011.

Pełny tekst źródła
Streszczenie:
Stroke disease is a serious cause of death globally. Early predictions of the disease will save a lot of lives but most of the clinical datasets are imbalanced in nature including the stroke dataset, making the predictive algorithms biased towards the majority class. The objective of this research is to compare different data resampling algorithms on the stroke dataset to improve the prediction performances of the machine learning models. This paper considered five (5) resampling algorithms namely; Random over Sampling (ROS), Synthetic Minority oversampling Technique (SMOTE), Adaptive Synthetic (ADASYN), hybrid techniques like SMOTE with Edited Nearest Neighbor (SMOTE-ENN), and SMOTE with Tomek Links (SMOTE-TOMEK) and trained on six (6) machine learning classifiers namely; Logistic Regression (LR), Decision Tree (DT), K-nearest Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF), and XGBoost (XGB). The hybrid technique SMOTE-ENN influences the machine learning classifiers the best followed by the SMOTE technique while the combination of SMOTE and XGB perform better with an accuracy of 97.99% and G-mean score of 0.99, and auc_roc score of 0.99. Resampling algorithms balance the dataset and enhanced the predictive power of machine learning algorithms. Therefore, we recommend resampling stroke dataset in predicting stroke disease than modeling on the imbalanced dataset.
Style APA, Harvard, Vancouver, ISO itp.
8

Jadwal, Pankaj Kumar, Sonal Jain i Basant Agarwal. "Clustering-based hybrid resampling techniques for social lending data". International Journal of Intelligent Systems Technologies and Applications 20, nr 3 (2021): 183. http://dx.doi.org/10.1504/ijista.2021.10044536.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jadwal, Pankaj Kumar, Sonal Jain i Basant Agarwal. "Clustering-based hybrid resampling techniques for social lending data". International Journal of Intelligent Systems Technologies and Applications 20, nr 3 (2021): 183. http://dx.doi.org/10.1504/ijista.2021.120495.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Karthikeyan, S., i T. Kathirvalavakumar. "A Hybrid Data Resampling Algorithm Combining Leader and SMOTE for Classifying the High Imbalanced Datasets". Indian Journal Of Science And Technology 16, nr 16 (27.04.2023): 1214–20. http://dx.doi.org/10.17485/ijst/v16i16.146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "HYBRID RESAMPLING"

1

Xu, Yangyi. "Frequentist-Bayesian Hybrid Tests in Semi-parametric and Non-parametric Models with Low/High-Dimensional Covariate". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/71285.

Pełny tekst źródła
Streszczenie:
We provide a Frequentist-Bayesian hybrid test statistic in this dissertation for two testing problems. The first one is to design a test for the significant differences between non-parametric functions and the second one is to design a test allowing any departure of predictors of high dimensional X from constant. The implementation is also given in construction of the proposal test statistics for both problems. For the first testing problem, we consider the statistical difference among massive outcomes or signals to be of interest in many diverse fields including neurophysiology, imaging, engineering, and other related fields. However, such data often have nonlinear system, including to row/column patterns, having non-normal distribution, and other hard-to-identifying internal relationship, which lead to difficulties in testing the significance in difference between them for both unknown relationship and high-dimensionality. In this dissertation, we propose an Adaptive Bayes Sum Test capable of testing the significance between two nonlinear system basing on universal non-parametric mathematical decomposition/smoothing components. Our approach is developed from adapting the Bayes sum test statistic by Hart (2009). Any internal pattern is treated through Fourier transformation. Resampling techniques are applied to construct the empirical distribution of test statistic to reduce the effect of non-normal distribution. A simulation study suggests our approach performs better than the alternative method, the Adaptive Neyman Test by Fan and Lin (1998). The usefulness of our approach is demonstrated with an application in the identification of electronic chips as well as an application to test the change of pattern of precipitations. For the second testing problem, currently numerous statistical methods have been developed for analyzing high-dimensional data. These methods mainly focus on variable selection approach, but are limited for purpose of testing with high-dimensional data, and often are required to have explicit derivative likelihood functions. In this dissertation, we propose ``Hybrid Omnibus Test'' for high-dimensional data testing purpose with much less requirements. Our Hybrid Omnibus Test is developed under semi-parametric framework where likelihood function is no longer necessary. Our Hybrid Omnibus Test is a version of Freqentist-Bayesian hybrid score-type test for a functional generalized partial linear single index model, which has link being functional of predictors through a generalized partially linear single index. We propose an efficient score based on estimating equation to the mathematical difficulty in likelihood derivation and construct our Hybrid Omnibus Test. We compare our approach with a empirical likelihood ratio test and Bayesian inference based on Bayes factor using simulation study in terms of false positive rate and true positive rate. Our simulation results suggest that our approach outperforms in terms of false positive rate, true positive rate, and computation cost in high-dimensional case and low-dimensional case. The advantage of our approach is also demonstrated by published biological results with application to a genetic pathway data of type II diabetes.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
2

Siegmund, Florian. "Dynamic Resampling for Preference-based Evolutionary Multi-objective Optimization of Stochastic Systems : Improving the efficiency of time-constrained optimization". Doctoral thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-13088.

Pełny tekst źródła
Streszczenie:
In preference-based Evolutionary Multi-objective Optimization (EMO), the decision maker is looking for a diverse, but locally focused non-dominated front in a preferred area of the objective space, as close as possible to the true Pareto-front. Since solutions found outside the area of interest are considered less important or even irrelevant, the optimization can focus its efforts on the preferred area and find the solutions that the decision maker is looking for more quickly, i.e., with fewer simulation runs. This is particularly important if the available time for optimization is limited, as is the case in many real-world applications. Although previous studies in using this kind of guided-search with preference information, for example, withthe R-NSGA-II algorithm, have shown positive results, only very few of them considered the stochastic outputs of simulated systems. In the literature, this phenomenon of stochastic evaluation functions is sometimes called noisy optimization. If an EMO algorithm is run without any countermeasure to noisy evaluation functions, the performance will deteriorate, compared to the case if the true mean objective values are known. While, in general, static resampling of solutions to reduce the uncertainty of all evaluated design solutions can allow EMO algorithms to avoid this problem, it will significantly increase the required simulation time/budget, as many samples will be wasted on candidate solutions which are inferior. In comparison, a Dynamic Resampling (DR) strategy can allow the exploration and exploitation trade-off to be optimized, since the required accuracy about objective values varies between solutions. In a dense, converged population, itis important to know the accurate objective values, whereas noisy objective values are less harmful when an algorithm is exploring the objective space, especially early in the optimization process. Therefore, a well-designed Dynamic Resampling strategy which resamples the solution carefully, according to the resampling need, can help an EMO algorithm achieve better results than a static resampling allocation. While there are abundant studies in Simulation-based Optimization that considered Dynamic Resampling, the survey done in this study has found that there is no related work that considered how combinations of Dynamic Resampling and preference-based guided search can further enhance the performance of EMO algorithms, especially if the problems under study involve computationally expensive evaluations, like production systems simulation. The aim of this thesis is therefore to study, design and then to compare new combinations of preference-based EMO algorithms with various DR strategies, in order to improve the solution quality found by simulation-based multi-objective optimization with stochastic outputs, under a limited function evaluation or simulation budget. Specifically, based on the advantages and flexibility offered by interactive, reference point-based approaches, studies of the performance enhancements of R-NSGA-II when augmented with various DR strategies, with increasing degrees of statistical sophistication, as well as several adaptive features in terms of optimization parameters, have been made. The research results have clearly shown that optimization results can be improved, if a hybrid DR strategy is used and adaptive algorithm parameters are chosen according to the noise level and problem complexity. In the case of a limited simulation budget, the results allow the conclusions that both decision maker preferences and DR should be used at the same time to achieve the best results in simulation-based multi-objective optimization.
Vid preferensbaserad evolutionär flermålsoptimering försöker beslutsfattaren hitta lösningar som är fokuserade kring ett valt preferensområde i målrymden och som ligger så nära den optimala Pareto-fronten som möjligt. Eftersom lösningar utanför preferensområdet anses som mindre intressanta, eller till och med oviktiga, kan optimeringen fokusera på den intressanta delen av målrymden och hitta relevanta lösningar snabbare, vilket betyder att färre lösningar behöver utvärderas. Detta är en stor fördel vid simuleringsbaserad flermålsoptimering med långa simuleringstider eftersom antalet olika konfigurationer som kan simuleras och utvärderas är mycket begränsat. Även tidigare studier som använt fokuserad flermålsoptimering styrd av användarpreferenser, t.ex. med algoritmen R-NSGA-II, har visat positiva resultat men enbart få av dessa har tagit hänsyn till det stokastiska beteendet hos de simulerade systemen. I litteraturen kallas optimering med stokastiska utvärderingsfunktioner ibland "noisy optimization". Om en optimeringsalgoritm inte tar hänsyn till att de utvärderade målvärdena är stokastiska kommer prestandan vara lägre jämfört med om optimeringsalgoritmen har tillgång till de verkliga målvärdena. Statisk upprepad utvärdering av lösningar med syftet att reducera osäkerheten hos alla evaluerade lösningar hjälper optimeringsalgoritmer att undvika problemet, men leder samtidigt till en betydande ökning av antalet nödvändiga simuleringar och därigenom en ökning av optimeringstiden. Detta är problematiskt eftersom det innebär att många simuleringar utförs i onödan på undermåliga lösningar, där exakta målvärden inte bidrar till att förbättra optimeringens resultat. Upprepad utvärdering reducerar ovissheten och hjälper till att förbättra optimeringen, men har också ett pris. Om flera simuleringar används för varje lösning så minskar antalet olika lösningar som kan simuleras och sökrymden kan inte utforskas lika mycket, givet att det totala antalet simuleringar är begränsat. Dynamisk upprepad utvärdering kan däremot effektivisera flermålsoptimeringens avvägning mellan utforskning och exploatering av sökrymden baserat på det faktum att den nödvändiga precisionen i målvärdena varierar mellan de olika lösningarna i målrymden. I en tät och konvergerad population av lösningar är det viktigt att känna till de exakta målvärdena, medan osäkra målvärden är mindre skadliga i ett tidigt stadium i optimeringsprocessen när algoritmen utforskar målrymden. En dynamisk strategi för upprepad utvärdering med en noggrann allokering av utvärderingarna kan därför uppnå bättre resultat än en allokering som är statisk. Trots att finns ett rikligt antal studier inom simuleringsbaserad optimering som använder sig av dynamisk upprepad utvärdering så har inga relaterade studier hittats som undersöker hur kombinationer av dynamisk upprepad utvärdering och preferensbaserad styrning kan förbättra prestandan hos algoritmer för flermålsoptimering ytterligare. Speciell avsaknad finns det av studier om optimering av problem med långa simuleringstider, som t.ex. simulering av produktionssystem. Avhandlingens mål är därför att studera, konstruera och jämföra nya kombinationer av preferensbaserade optimeringsalgoritmer och dynamiska strategier för upprepad utvärdering. Syftet är att förbättra resultatet av simuleringsbaserad flermålsoptimering som har stokastiska målvärden när antalet utvärderingar eller optimeringstiden är begränsade. Avhandlingen har speciellt fokuserat på att undersöka prestandahöjande åtgärder hos algoritmen R-NSGA-II i kombination med dynamisk upprepad utvärdering, baserad på fördelarna och flexibiliteten som interaktiva referenspunktbaserade algoritmer erbjuder. Exempel på förbättringsåtgärder är dynamiska algoritmer för upprepad utvärdering med förbättrad statistisk osäkerhetshantering och adaptiva optimeringsparametrar. Resultaten från avhandlingen visar tydligt att optimeringsresultaten kan förbättras om hybrida dynamiska algoritmer för upprepad utvärdering används och adaptiva optimeringsparametrar väljs beroende på osäkerhetsnivån och komplexiteten i optimeringsproblemet. För de fall där simuleringstiden är begränsad är slutsatsen från avhandlingen att både användarpreferenser och dynamisk upprepad utvärdering bör användas samtidigt för att uppnå de bästa resultaten i simuleringsbaserad flermålsoptimering.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "HYBRID RESAMPLING"

1

Siegmund, Florian, Amos H. C. Ng i Kalyanmoy Deb. "Hybrid Dynamic Resampling for Guided Evolutionary Multi-Objective Optimization". W Lecture Notes in Computer Science, 366–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15934-8_25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Srivastava, Jaya, i Aditi Sharan. "Phishing Website Detection Based on Hybrid Resampling KMeansSMOTENCR and Cost-Sensitive Classification". W Advances in Cognitive Science and Communications, 725–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8086-2_69.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Siegmund, Florian, Amos H. C. Ng i Kalyanmoy Deb. "Hybrid Dynamic Resampling Algorithms for Evolutionary Multi-objective Optimization of Invariant-Noise Problems". W Applications of Evolutionary Computation, 311–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31153-1_21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

da Silva, Wellington Betencurte, Julio Cesar Sampaio Dutra, José Mir Justino da Costa, Luiz Alberto da Silva Abreu, Diego Campos Knupp i Antônio José Silva Neto. "A Hybrid Estimation Scheme Based on the Sequential Importance Resampling Particle Filter and the Particle Swarm Optimization (PSO-SIR)". W Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, 247–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96433-1_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

N. K., Sreeja. "Learning From Class Imbalance". W Handbook of Research on Fireworks Algorithms and Swarm Intelligence, 109–29. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1659-1.ch005.

Pełny tekst źródła
Streszczenie:
Learning a classifier from imbalanced data is one of the most challenging research problems. Data imbalance occurs when the number of instances belonging to one class is much less than the number of instances belonging to the other class. A standard classifier is biased towards the majority class and therefore misclassifies the minority class instances. Minority class instances may be regarded as rare events or unusual patterns that could potentially have a negative impact on the society. Therefore, detection of such events is considered significant. This chapter proposes a FireWorks-based Hybrid ReSampling (FWHRS) algorithm to resample imbalance data. It is used with Weighted Pattern Matching based classifier (PMC+) for classification. FWHRS-PMC+ was evaluated on 44 imbalanced binary datasets. Experiments reveal FWHRS-PMC+ is effective in classification of imbalanced data. Empirical results were validated using non-parametric statistical tests.
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "HYBRID RESAMPLING"

1

Yuan, Xiaoru, Minh X. Nguyen, Hui Xu i Baoquan Chen. "Hybrid forward resampling and volume rendering". W the 2003 Eurographics/IEEE TVCG Workshop. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/827051.827069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ivaldi, W., M. Milgram i S. Gentric. "A hybrid resampling framework for facial shape alignment". W 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.86.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Halimeh, Mhd Modar, Christian Huemmer, Andreas Brendel i Walter Kellermann. "Hybrid Particle Filtering Based on an Elitist Resampling Scheme". W 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2018. http://dx.doi.org/10.1109/sam.2018.8448400.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cao, Lu, i Yikui Zhai. "Imbalanced Data Classification Based on a Hybrid Resampling SVM Method". W 2015 IEEE 12th Intl. Conf. on Ubiquitous Intelligence and Computing, 2015 IEEE 12th Intl. Conf. on Autonomic and Trusted Computing and 2015 IEEE 15th Intl. Conf. on Scalable Computing and Communications and its Associated Workshops (UIC-ATC-ScalCom). IEEE, 2015. http://dx.doi.org/10.1109/uic-atc-scalcom-cbdcom-iop.2015.275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Leichen Chen, Zhihua Cai, Lu Chen i Qiong Gu. "A Novel Differential Evolution-Clustering Hybrid Resampling Algorithm on Imbalanced Datasets". W 2010 3rd International Conference on Knowledge Discovery and Data Mining (WKDD 2010). IEEE, 2010. http://dx.doi.org/10.1109/wkdd.2010.48.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Seetan, Raed I., Jacob Bible, Michael Karavias, Wael Seitan i Sam Thangiah. "Consensus Clustering: A Resampling-Based Method for Building Radiation Hybrid Maps". W 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2016. http://dx.doi.org/10.1109/icmla.2016.0047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pristyanto, Yoga, i Akhmad Dahlan. "Hybrid Resampling for Imbalanced Class Handling on Web Phishing Classification Dataset". W 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). IEEE, 2019. http://dx.doi.org/10.1109/icitisee48480.2019.9003803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Baro, Pranita, i Malaya Dutta Borah. "A Hybrid Resampling Approach to Handle Class Imbalance Problem and Missing Data". W 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). IEEE, 2022. http://dx.doi.org/10.1109/upcon56432.2022.9986452.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pristyanto, Yoga, Noor Akhmad Setiawan i Igi Ardiyanto. "Hybrid resampling to handle imbalanced class on classification of student performance in classroom". W 2017 1st International Conference on Informatics and Computational Sciences (ICICoS). IEEE, 2017. http://dx.doi.org/10.1109/icicos.2017.8276363.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Keller, Aishwarya, i Anukul Pandey. "Hybrid Resampling and Xgboost Prediction Using Patient's Details as Features for Parkinson's Disease Detection". W 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). IEEE, 2021. http://dx.doi.org/10.1109/icses52305.2021.9633831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii