Gotowa bibliografia na temat „Hybrid quantum devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hybrid quantum devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hybrid quantum devices"
Wallquist, M., K. Hammerer, P. Rabl, M. Lukin i P. Zoller. "Hybrid quantum devices and quantum engineering". Physica Scripta T137 (grudzień 2009): 014001. http://dx.doi.org/10.1088/0031-8949/2009/t137/014001.
Pełny tekst źródłaChu, Yiwen, Jonathan D. Pritchard, Hailin Wang i Martin Weides. "Hybrid quantum devices: Guest editorial". Applied Physics Letters 118, nr 24 (14.06.2021): 240401. http://dx.doi.org/10.1063/5.0057740.
Pełny tekst źródłaDe Franceschi, Silvano, Leo Kouwenhoven, Christian Schönenberger i Wolfgang Wernsdorfer. "Hybrid superconductor–quantum dot devices". Nature Nanotechnology 5, nr 10 (19.09.2010): 703–11. http://dx.doi.org/10.1038/nnano.2010.173.
Pełny tekst źródłaPierini, S., M. D’Amato, M. Joos, Q. Glorieux, E. Giacobino, E. Lhuillier, C. Couteau i A. Bramati. "Hybrid devices for quantum nanophotonics". Journal of Physics: Conference Series 1537 (maj 2020): 012005. http://dx.doi.org/10.1088/1742-6596/1537/1/012005.
Pełny tekst źródłaKanne, Thomas, Dags Olsteins, Mikelis Marnauza, Alexandros Vekris, Juan Carlos Estrada Saldaña, Sara Loric̀, Rasmus D. Schlosser i in. "Double Nanowires for Hybrid Quantum Devices". Advanced Functional Materials 32, nr 9 (21.11.2021): 2107926. http://dx.doi.org/10.1002/adfm.202107926.
Pełny tekst źródłaMoumaris, Mohamed, Jean-Michel Bretagne i Nisen Abuaf. "Nanomedical Devices and Cancer Theranostics". Open Nanomedicine and Nanotechnology Journal 6, nr 1 (21.04.2020): 1–11. http://dx.doi.org/10.2174/2666150002006010001.
Pełny tekst źródłaTSU, RAPHAEL. "QUANTUM DEVICES WITH MULTIPOLE-ELECTRODE — HETEROJUNCTIONS HYBRID STRUCTURES". International Journal of High Speed Electronics and Systems 12, nr 04 (grudzień 2002): 1159–71. http://dx.doi.org/10.1142/s0129156402001976.
Pełny tekst źródłaKadim, Akeel M. "Fabrication of Quantum Dots Light Emitting Device by Using CdTe Quantum Dots and Organic Polymer". Journal of Nano Research 50 (listopad 2017): 48–56. http://dx.doi.org/10.4028/www.scientific.net/jnanor.50.48.
Pełny tekst źródłaScherübl, Zoltán, András Pályi i Szabolcs Csonka. "Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup". Beilstein Journal of Nanotechnology 10 (6.02.2019): 363–78. http://dx.doi.org/10.3762/bjnano.10.36.
Pełny tekst źródłaKurizki, Gershon, Patrice Bertet, Yuimaru Kubo, Klaus Mølmer, David Petrosyan, Peter Rabl i Jörg Schmiedmayer. "Quantum technologies with hybrid systems". Proceedings of the National Academy of Sciences 112, nr 13 (3.03.2015): 3866–73. http://dx.doi.org/10.1073/pnas.1419326112.
Pełny tekst źródłaRozprawy doktorskie na temat "Hybrid quantum devices"
Bhat, Jerome C. "Electroluminescent hybrid organic/inorganic quantum dot devices". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298766.
Pełny tekst źródłaBoonkoom, Thitikorn. "InP quantum dots for hybrid photovoltaic devices". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17778.
Pełny tekst źródłaCoe-Sullivan, Seth (Seth Alexander). "Hybrid organic/quantum dot thin film structures and devices". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33935.
Pełny tekst źródłaIncludes bibliographical references (p. 157-169).
Organic light emitting diodes have undergone rapid advancement over the course of the past decade. Similarly, quantum dot synthesis has progressed to the point that room temperature highly efficient photoluminescence can be realized. It is the purpose of this work to utilize the beneficial properties of these two material sets in a robust light emitting device. New deposition techniques are necessary to the realization of this goal, enabling QD organic hybrids to be created in a quick and reliable manner compatible with known device fabrication methods. With these techniques, quantum dot light emitting devices are fabricated, measured, and analyzed. The devices are of high efficiency and color saturation, and provide us with a test bed for understanding the interactions between inorganic QDs and organic thin films.
by Seth Coe-Sullivan.
Ph.D.
Garner, Brett William. "Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices". Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc6108/.
Pełny tekst źródłaGünel, Haci Yusuf [Verfasser]. "Quantum transport in nanowire-based hybrid devices / Haci Yusuf Günel". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1047231794/34.
Pełny tekst źródłaGünel, Hacı Yusuf [Verfasser]. "Quantum transport in nanowire-based hybrid devices / Haci Yusuf Günel". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-47434.
Pełny tekst źródłaHaverinen, H. (Hanna). "Inkjet-printed quantum dot hybrid light-emitting devices—towards display applications". Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514261275.
Pełny tekst źródłaBothner, Daniel [Verfasser], i Reinhold [Akademischer Betreuer] Kleiner. "Micropatterned Superconducting Film Circuitry for Operation in Hybrid Quantum Devices / Daniel Bothner ; Betreuer: Reinhold Kleiner". Tübingen : Universitätsbibliothek Tübingen, 2014. http://d-nb.info/1162897465/34.
Pełny tekst źródłaDabbousi, Bashir O. (Bashir Osama). "Fabrication and characterization of hybrid organic/inorganic electroluminescent devices based on cadmium selenide nanocrystallites (quantum dots)". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10434.
Pełny tekst źródłaHuang, Wei-Jie, i Wei-Jie Huang. "Towards Increased Photovoltaic Energy Generation Efficiency and Reliability: Quantum-Scale Spectral Sensitizers in Thin-Film Hybrid Devices and Microcracking in Monocrystalline Si". Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/623175.
Pełny tekst źródłaKsiążki na temat "Hybrid quantum devices"
Grove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Redaktor A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.
Pełny tekst źródłaNarlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Pełny tekst źródłaNarlikar, A. V., red. The Oxford Handbook of Small Superconductors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.001.0001.
Pełny tekst źródłaLaunay, Jean-Pierre, i Michel Verdaguer. The mastered electron: molecular electronics and spintronics, molecular machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0005.
Pełny tekst źródłaPfirrmann, Marco. Adding nonlinearity to an electromagnetic-magnonic quantum hybrid device. KIT Scientific Publishing, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Hybrid quantum devices"
Lin, Chien-Chung. "Hybrid Optoelectronic Devices with Colloidal Quantum Dots". W Lecture Notes in Nanoscale Science and Technology, 67–90. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8148-5_3.
Pełny tekst źródłaRamar, M., R. Manimozhi, C. K. Suman, R. Ahamad i Ritu Srivastava. "Study of Schottky Barrier Contact in Hybrid CdSe Quantum Dot Organic Solar Cells". W Physics of Semiconductor Devices, 367–70. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_92.
Pełny tekst źródłaSaini, Ravi, Ashish Mani, M. S. Prasad i Siddhartha Bhattacharyya. "Toward a framework for implementation of quantum-inspired evolutionary algorithm on noisy intermediate scale quantum devices (IBMQ) for solving knapsack problems". W Hybrid Computational Intelligent Systems, 345–61. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003381167-23.
Pełny tekst źródłaShao, Xue, i Zhiping Yu. "A Hybrid 3D Quantum Mechanical Simulation of FinFETs and Nanowire Devices". W Simulation of Semiconductor Processes and Devices 2004, 21–24. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_5.
Pełny tekst źródłaMehta, Aarti, Shailesh N. Sharma, Kanchan Sharma, Parth Vashishtha i S. Chand. "Single-Pot Rapid Synthesis of Colloidal Core/Core-Shell Quantum Dots: A Novel Polymer-Nanocrystal Hybrid Material". W Physics of Semiconductor Devices, 315–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_79.
Pełny tekst źródłaNagan, Tristan, i Ritesh Ajoodha. "Evaluating the Performance of Hybrid Quantum-Classical Convolutional Neural Networks on NISQ Devices". W Proceedings of Sixth International Congress on Information and Communication Technology, 219–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2102-4_20.
Pełny tekst źródłaRosales-Alvarado, Sandra S., Oscar Montiel, Ulises Orozco-Rosas i Juan J. Tapia. "Developing a Quantum Genetic Algorithm in MATLAB Using a Quantum Device on AWS". W New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms, 111–27. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53713-4_10.
Pełny tekst źródłaTSU, RAPHAEL. "QUANTUM DEVICES WITH MULTIPOLE-ELECTRODE — HETEROJUNCTIONS HYBRID STRUCTURES". W Advanced Semiconductor Heterostructures, 221–33. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812775542_0011.
Pełny tekst źródłaKachurova, Monika, Tomislav Shuminoski i Mitko Bogdanoski. "Lattice-Based Cryptography: A Quantum Approach to Secure the IoT Technology". W Building Cyber Resilience against Hybrid Threats. IOS Press, 2022. http://dx.doi.org/10.3233/nicsp220023.
Pełny tekst źródłaHayati Raad, Shiva. "Optical Waveguides for Quantum Computation". W Optical Waveguides and Related Technology [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.114996.
Pełny tekst źródłaStreszczenia konferencji na temat "Hybrid quantum devices"
Bouscher, Shlomi, Sima Buchbinder, Dmitry Panna, Krishna Balasubramanian, Ronen Jacovi, Ankit Kumar, Christian Schneider, Sven Höfling i Alex Hayat. "Two-Photon Emission and Correlations in Hybrid Superconductor-Semiconductor Devices". W Quantum 2.0, QM3B.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm3b.6.
Pełny tekst źródłaRickert, Lucas, Daniel Vajner, Martin v. Helversen, Johannes Schall, Sven Rodt, Stephan Reitzenstein, Kinga Zolnac i in. "Fiber-pigtailed Quantum Dot Hybrid Circular Bragg Gratings". W Quantum 2.0, QM5B.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5b.3.
Pełny tekst źródłaLazzari, Lorenzo, Jérémie Schuhmann, Aristide Lemaître, Maria I. Amanti, Frédéric Boeuf, Fabrice Raineri, Florent Baboux i Sara Ducci. "Hybrid III-V/Silicon photonic circuits embedding generation and routing of entangled photon pairs". W Quantum 2.0, QW2A.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw2a.3.
Pełny tekst źródłaJöns, Klaus D., Ali W. Elshaari, Iman Esmaeil Zadeh, Andreas Fognini, Michael E. Reimer, Dan Dalacu, Philip J. Poole i Val Zwiller. "On-chip hybrid quantum circuits (Conference Presentation)". W Quantum Photonic Devices, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2271680.
Pełny tekst źródłaMunro, William J., Andreas Angerer, Thomas Astner, Stefan Putz, Jorg Schmiedmayer, Johannes Majer i Kae Nemoto. "Hybrid quantum systems in the microwave regime (Conference Presentation)". W Quantum Photonic Devices 2018, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2320217.
Pełny tekst źródłaAlén, Benito, David Fuster, Yolanda González i Luisa González. "Quantum light emitting device with hybrid pumping (Conference Presentation)". W Quantum Photonic Devices 2018, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2323608.
Pełny tekst źródłaDavanco, Marcelo I. "Hybrid integration for quantum photonics with single emitters (Conference Presentation)". W Quantum Photonic Devices 2018, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2323846.
Pełny tekst źródłaNayfeh, Osama M., Patrick C. Sims, Brad Liu, Saurabh Sharma, Carlos M. Torres, Lance Lerum, Mohammed Fahem i in. "Integration of optically active neodymium ions in niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems". W Quantum Photonic Devices, redaktorzy Mario Agio, Kartik Srinivasan i Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2273012.
Pełny tekst źródłaLi, Y., J. C. Qian, Z. H. Jiang, T. H. Lo, D. Ding, T. Draher, T. Polakovic i in. "Hybrid-Magnon Quantum Devices: Strategies and Approaches". W 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019460.
Pełny tekst źródłaDou, Letian. "Organic-perovskite hybrid quantum wells for lighting-emitting devices". W Organic and Hybrid Light Emitting Materials and Devices XXV, redaktorzy Tae-Woo Lee, Franky So i Chihaya Adachi. SPIE, 2021. http://dx.doi.org/10.1117/12.2593780.
Pełny tekst źródła