Artykuły w czasopismach na temat „Hybrid Plasmonic Metamaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hybrid Plasmonic Metamaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Jaksic, Zoran, Marko Obradov, Olga Jaksic, Goran Isic, Slobodan Vukovic i Vasiljevic Radovic. "Methods of decreasing losses in optical metamaterials". Facta universitatis - series: Electronics and Energetics 31, nr 4 (2018): 501–18. http://dx.doi.org/10.2298/fuee1804501j.
Pełny tekst źródłaMaccaferri, Nicolò, Alessio Gabbani, Francesco Pineider, Terunori Kaihara, Tlek Tapani i Paolo Vavassori. "Magnetoplasmonics in confined geometries: Current challenges and future opportunities". Applied Physics Letters 122, nr 12 (20.03.2023): 120502. http://dx.doi.org/10.1063/5.0136941.
Pełny tekst źródłaPancaldi, Matteo, Naëmi Leo i Paolo Vavassori. "Selective and fast plasmon-assisted photo-heating of nanomagnets". Nanoscale 11, nr 16 (2019): 7656–66. http://dx.doi.org/10.1039/c9nr01628g.
Pełny tekst źródłaZeng, Shuwen, Guozhen Liang, Alexandre Gheno, Sylvain Vedraine, Bernard Ratier, Ho-Pui Ho i Nanfang Yu. "Plasmonic Metasensors Based on 2D Hybrid Atomically Thin Perovskite Nanomaterials". Nanomaterials 10, nr 7 (30.06.2020): 1289. http://dx.doi.org/10.3390/nano10071289.
Pełny tekst źródłaFujita, Kazuhiro. "Hybrid Newmark-conformal FDTD modeling of thin spoof plasmonic metamaterials". Journal of Computational Physics 376 (styczeń 2019): 390–410. http://dx.doi.org/10.1016/j.jcp.2018.09.050.
Pełny tekst źródłaKilic, Ufuk, Matthew Hilfiker, Alexander Ruder, Rene Feder, Eva Schubert, Mathias Schubert i Christos Argyropoulos. "Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials". Advanced Functional Materials 31, nr 20 (17.02.2021): 2010329. http://dx.doi.org/10.1002/adfm.202010329.
Pełny tekst źródłaAhmadivand, Arash, Burak Gerislioglu, G. Timothy Noe i Yogendra Kumar Mishra. "Gated Graphene Enabled Tunable Charge–Current Configurations in Hybrid Plasmonic Metamaterials". ACS Applied Electronic Materials 1, nr 5 (17.04.2019): 637–41. http://dx.doi.org/10.1021/acsaelm.9b00035.
Pełny tekst źródłaWang, Huan, Jiajun Linghu, Xuezhi Wang, Qiyi Zhao i Hao Shen. "Angular-Dependent THz Modulator with Hybrid Metal-Graphene Metastructures". Nanomaterials 13, nr 13 (23.06.2023): 1914. http://dx.doi.org/10.3390/nano13131914.
Pełny tekst źródłaLi, Yuxiang, Guohua Dong, Ruiqiang Zhao, Kai Wang, Shaoen Zhou, LiLi Sun, Ping Li, Zheng Zhu, Chunying Guan i Jinhui Shi. "Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials". Journal of Physics D: Applied Physics 51, nr 28 (25.06.2018): 285105. http://dx.doi.org/10.1088/1361-6463/aac9a3.
Pełny tekst źródłaHuang, Jijie, Xin Li Phuah, Luke Mitchell McClintock, Prashant Padmanabhan, K. S. N. Vikrant, Han Wang, Di Zhang i in. "Core-shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling". Materials Today 51 (grudzień 2021): 39–47. http://dx.doi.org/10.1016/j.mattod.2021.10.024.
Pełny tekst źródłaGuddala, Sriram, D. Narayana Rao i S. Anantha Ramakrishna. "Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances". Journal of Optics 18, nr 6 (18.04.2016): 065104. http://dx.doi.org/10.1088/2040-8978/18/6/065104.
Pełny tekst źródłaHuang, Jijie, Xuejing Wang, Nicki L. Hogan, Shengxiang Wu, Ping Lu, Zhe Fan, Yaomin Dai i in. "Nanoscale Artificial Plasmonic Lattice in Self-Assembled Vertically Aligned Nitride-Metal Hybrid Metamaterials". Advanced Science 5, nr 7 (27.04.2018): 1800416. http://dx.doi.org/10.1002/advs.201800416.
Pełny tekst źródłaLi, Yang, Dezhao Li, Dan Zhou, Cheng Chi, Shihe Yang i Baoling Huang. "Efficient, Scalable, and High-Temperature Selective Solar Absorbers Based on Hybrid-Strategy Plasmonic Metamaterials". Solar RRL 2, nr 8 (24.05.2018): 1800057. http://dx.doi.org/10.1002/solr.201800057.
Pełny tekst źródłaLian, Jiqing, Dawei Zhang, Ruijin Hong, Tingzhen Yan, Taiguo Lv i Daohua Zhang. "Broadband Absorption Tailoring of SiO2/Cu/ITO Arrays Based on Hybrid Coupled Resonance Mode". Nanomaterials 9, nr 6 (4.06.2019): 852. http://dx.doi.org/10.3390/nano9060852.
Pełny tekst źródłaHernandez Linares, I. G., i G. Gonzalez de la Cruz. "Role of Plasmon Modes on the Optical Reflectivity of Graphene-Metallic Structures: A Theoretical Approach". Journal of Nano Research 60 (listopad 2019): 76–85. http://dx.doi.org/10.4028/www.scientific.net/jnanor.60.76.
Pełny tekst źródłaPaldi, Robynne L., Xuejing Wang, Xing Sun, Zihao He, Zhimin Qi, Xinghang Zhang i Haiyan Wang. "Vertically Aligned AgxAu1–x Alloyed Nanopillars Embedded in ZnO as Nanoengineered Low-Loss Hybrid Plasmonic Metamaterials". Nano Letters 20, nr 5 (24.04.2020): 3778–85. http://dx.doi.org/10.1021/acs.nanolett.0c00790.
Pełny tekst źródłaChen, Chen, Liu, Cheng, Zhou, Xiao i Chen. "Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface". Nanomaterials 9, nr 10 (20.09.2019): 1350. http://dx.doi.org/10.3390/nano9101350.
Pełny tekst źródłaZhang, Di, Shikhar Misra, Jie Jian, Ping Lu, Leigang Li, Ashley Wissel, Xinghang Zhang i Haiyan Wang. "Self-Assembled BaTiO3–AuxAg1–x Low-Loss Hybrid Plasmonic Metamaterials with an Ordered “Nano-Domino-like” Microstructure". ACS Applied Materials & Interfaces 13, nr 4 (19.01.2021): 5390–98. http://dx.doi.org/10.1021/acsami.0c19108.
Pełny tekst źródłaHu, Hai, Na Chen, Hanchao Teng, Renwen Yu, Mengfei Xue, Ke Chen, Yuchuan Xiao i in. "Gate-tunable negative refraction of mid-infrared polaritons". Science 379, nr 6632 (10.02.2023): 558–61. http://dx.doi.org/10.1126/science.adf1251.
Pełny tekst źródłaMa, Zhenhe, Xianghe Meng, Xiaodi Liu, Guangyuan Si i Yan Jun Liu. "Liquid Crystal Enabled Dynamic Nanodevices". Nanomaterials 8, nr 11 (23.10.2018): 871. http://dx.doi.org/10.3390/nano8110871.
Pełny tekst źródłaKilic, Ufuk, Matthew Hilfiker, Alexander Ruder, Rene Feder, Eva Schubert, Mathias Schubert i Christos Argyropoulos. "Helical Nanostructures: Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials (Adv. Funct. Mater. 20/2021)". Advanced Functional Materials 31, nr 20 (maj 2021): 2170143. http://dx.doi.org/10.1002/adfm.202170143.
Pełny tekst źródłaLi, Yang, Dezhao Li, Dan Zhou, Cheng Chi, Shihe Yang i Baoling Huang. "Efficient, Scalable, and High-Temperature Selective Solar Absorbers Based on Hybrid-Strategy Plasmonic Metamaterials (Solar RRL 8∕2018)". Solar RRL 2, nr 8 (sierpień 2018): 1870196. http://dx.doi.org/10.1002/solr.201870196.
Pełny tekst źródłaVerma, Sneha, i B. M. A. Rahman. "Advanced refractive index sensor using 3-dimensional metamaterial based nanoantenna array". Journal of Physics: Conference Series 2407, nr 1 (1.12.2022): 012054. http://dx.doi.org/10.1088/1742-6596/2407/1/012054.
Pełny tekst źródłaZhang, Jianfa, Qilin Hong, Jinglan Zou, Yuwen He, Xiaodong Yuan, Zhihong Zhu i Shiqiao Qin. "Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor". Micromachines 11, nr 3 (4.03.2020): 268. http://dx.doi.org/10.3390/mi11030268.
Pełny tekst źródłaVerma, Sneha, i B. M. A. Rahman. "Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array". Sensors 23, nr 3 (23.01.2023): 1290. http://dx.doi.org/10.3390/s23031290.
Pełny tekst źródłaDu, Wei, Youcheng Zhu, Zhendong Yan, Xiulian Xu, Xiaoyong Xu, Jingguo Hu, Pinggen Cai i Chaojun Tang. "Pronounced Linewidth Narrowing of Vertical Metallic Split-Ring Resonators via Strong Coupling with Metal Surface". Nanomaterials 11, nr 9 (26.08.2021): 2194. http://dx.doi.org/10.3390/nano11092194.
Pełny tekst źródłaGu, Jianqiang, Ranjan Singh, Abul K. Azad, Jiaguang Han, Antoinette J. Taylor, John F. O’Hara i Weili Zhang. "An active hybrid plasmonic metamaterial". Optical Materials Express 2, nr 1 (1.12.2011): 31. http://dx.doi.org/10.1364/ome.2.000031.
Pełny tekst źródłaHedayati, M. Keshavarz, S. Fahr, C. Etrich, F. Faupel, C. Rockstuhl i M. Elbahri. "The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow". Nanoscale 6, nr 11 (2014): 6037–45. http://dx.doi.org/10.1039/c4nr00087k.
Pełny tekst źródłaShi, Cai-Feng, Zhong-Qiu Li, Chen Wang, Jian Li i Xing-Hua Xia. "Ultrasensitive plasmon enhanced Raman scattering detection of nucleolin using nanochannels of 3D hybrid plasmonic metamaterial". Biosensors and Bioelectronics 178 (kwiecień 2021): 113040. http://dx.doi.org/10.1016/j.bios.2021.113040.
Pełny tekst źródłaZhang, Zhaojian, Junbo Yang, Xin He, Yunxin Han, Jingjing Zhang, Jie Huang, Dingbo Chen i Siyu Xu. "Active control of broadband plasmon-induced transparency in a terahertz hybrid metal–graphene metamaterial". RSC Advances 8, nr 49 (2018): 27746–53. http://dx.doi.org/10.1039/c8ra04329a.
Pełny tekst źródłaYan, Zhendong, Zhixing Zhang, Wei Du, Wenjuan Wu, Taoping Hu, Zi Yu, Ping Gu, Jing Chen i Chaojun Tang. "Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial". Nanomaterials 10, nr 12 (2.12.2020): 2408. http://dx.doi.org/10.3390/nano10122408.
Pełny tekst źródłaButt, Muhammad Ali, i Nikolai Lvovich Kazansky. "Narrowband perfect metasurface absorber based on impedance matching". Photonics Letters of Poland 12, nr 3 (30.09.2020): 88. http://dx.doi.org/10.4302/plp.v12i3.1041.
Pełny tekst źródłaHabib, Mohsin, Murat Gokbayrak, Ekmel Ozbay i Humeyra Caglayan. "Electrically controllable plasmon induced reflectance in hybrid metamaterials". Applied Physics Letters 113, nr 22 (26.11.2018): 221105. http://dx.doi.org/10.1063/1.5063461.
Pełny tekst źródłaKalaswad, Matias, Di Zhang, Xingyao Gao, Lisette Lopez Contreras, Han Wang, Xuejing Wang i Haiyan Wang. "Integration of Hybrid Plasmonic Au–BaTiO3 Metamaterial on Silicon Substrates". ACS Applied Materials & Interfaces 11, nr 48 (8.11.2019): 45199–206. http://dx.doi.org/10.1021/acsami.9b15528.
Pełny tekst źródłaShen, Jinyong, Tianyun Zhu, Jing Zhou, Zeshi Chu, Xiansong Ren, Jie Deng, Xu Dai i in. "High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors". Sensors 23, nr 1 (24.12.2022): 168. http://dx.doi.org/10.3390/s23010168.
Pełny tekst źródłaZhang, Di, Zhimin Qi, Jie Jian, Jijie Huang, Xin Li Phuah, Xinghang Zhang i Haiyan Wang. "Thermally Stable Au–BaTiO3 Nanoscale Hybrid Metamaterial for High-Temperature Plasmonic Applications". ACS Applied Nano Materials 3, nr 2 (23.01.2020): 1431–37. http://dx.doi.org/10.1021/acsanm.9b02271.
Pełny tekst źródłaJi, Jie, Siyan Zhou, Weijun Wang, Furi Ling i Jianquan Yao. "Active control of terahertz plasmon-induced transparency in the hybrid metamaterial/monolayer MoS2/Si structure". Nanoscale 11, nr 19 (2019): 9429–35. http://dx.doi.org/10.1039/c8nr08813f.
Pełny tekst źródłaWang, Xuejing, Jie Jian, Zhiguang Zhou, Cuncai Fan, Yaomin Dai, Leigang Li, Jijie Huang i in. "Self‐Assembled Ag–TiN Hybrid Plasmonic Metamaterial: Tailorable Tilted Nanopillar and Optical Properties". Advanced Optical Materials 7, nr 3 (3.12.2018): 1801180. http://dx.doi.org/10.1002/adom.201801180.
Pełny tekst źródłaHu, Haitao, Xue Lu, Jianhua Huang, Kai Chen, Jun Su, Zhendong Yan, Chaojun Tang i Pingen Cai. "Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing". Nanomaterials 11, nr 12 (11.12.2021): 3361. http://dx.doi.org/10.3390/nano11123361.
Pełny tekst źródłaHajian, Hodjat, Amir Ghobadi, Sina Abedini Dereshgi, Bayram Butun i Ekmel Ozbay. "Hybrid plasmon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials [Invited]". Journal of the Optical Society of America B 34, nr 7 (13.04.2017): D29. http://dx.doi.org/10.1364/josab.34.000d29.
Pełny tekst źródłaChen, Hongting, Zhaojian Zhang, Xiao Zhang, Yunxin Han, Zigang Zhou i Junbo Yang. "Multifunctional Plasmon-Induced Transparency Devices Based on Hybrid Metamaterial-Waveguide Systems". Nanomaterials 12, nr 19 (21.09.2022): 3273. http://dx.doi.org/10.3390/nano12193273.
Pełny tekst źródłaZhang, Q., S. Zhou, S. F. Fu i X. Z. Wang. "Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial". AIP Advances 7, nr 4 (kwiecień 2017): 045216. http://dx.doi.org/10.1063/1.4982672.
Pełny tekst źródłaButt, Muhammad Ali. "Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio". Photonics Letters of Poland 12, nr 3 (30.09.2020): 82. http://dx.doi.org/10.4302/plp.v12i3.1042.
Pełny tekst źródłaGong, Hui, Yu-Min Liu, Zhong-Yuan Yu, Xiu Wu i Hao-Zhi Yin. "Hybrid plasmon waveguides with metamaterial substrate and dielectric substrate: A contrastive study". Chinese Physics B 23, nr 4 (kwiecień 2014): 046103. http://dx.doi.org/10.1088/1674-1056/23/4/046103.
Pełny tekst źródłaLiu, Bin, Pinghui Wu, Hongyang Zhu i Li Lv. "Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectric−Dielectric−Metal Three-Layer Film Material". Micromachines 12, nr 12 (12.12.2021): 1552. http://dx.doi.org/10.3390/mi12121552.
Pełny tekst źródłaLitt, David B., Matthew R. Jones, Mario Hentschel, Ying Wang, Sui Yang, Hyun Dong Ha, Xiang Zhang i A. Paul Alivisatos. "Hybrid Lithographic and DNA-Directed Assembly of a Configurable Plasmonic Metamaterial That Exhibits Electromagnetically Induced Transparency". Nano Letters 18, nr 2 (11.01.2018): 859–64. http://dx.doi.org/10.1021/acs.nanolett.7b04116.
Pełny tekst źródłaJibin, Kunnumpurathu, Jayaram S. Prasad, Giridharan Saranya, Sachin J. Shenoy, Kaustabh K. Maiti i Ramapurath S. Jayasree. "Optically controlled hybrid metamaterial of plasmonic spiky gold inbuilt graphene sheets for bimodal imaging guided multimodal therapy". Biomaterials Science 8, nr 12 (2020): 3381–91. http://dx.doi.org/10.1039/d0bm00312c.
Pełny tekst źródłaWang, Xianjun, Hongyun Meng, Shuying Deng, Chaode Lao, Zhongchao Wei, Faqiang Wang, Chunhua Tan i Xuguang Huang. "Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface". Nanomaterials 9, nr 3 (6.03.2019): 385. http://dx.doi.org/10.3390/nano9030385.
Pełny tekst źródłaAdl, Hamid Pashaei, Setatira Gorji, Andrés F. Gualdrón-Reyes, Iván Mora-Seró, Isaac Suárez i Juan P. Martínez-Pastor. "Enhanced Spontaneous Emission of CsPbI3 Perovskite Nanocrystals Using a Hyperbolic Metamaterial Modified by Dielectric Nanoantenna". Nanomaterials 13, nr 1 (20.12.2022): 11. http://dx.doi.org/10.3390/nano13010011.
Pełny tekst źródłaGric, Tatjana, i Ortwin Hess. "Controlling hybrid-polarization surface plasmon polaritons in dielectric-transparent conducting oxides metamaterials via their effective properties". Journal of Applied Physics 122, nr 19 (21.11.2017): 193105. http://dx.doi.org/10.1063/1.5001167.
Pełny tekst źródła