Artykuły w czasopismach na temat „Hybrid physics-data driven models”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hybrid physics-data driven models”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, C., H. Xue, G. Dong, H. Jing i S. He. "RUNOFF ESTIMATION BASED ON HYBRID-PHYSICS-DATA MODEL". ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2022 (17.05.2022): 347–52. http://dx.doi.org/10.5194/isprs-annals-v-3-2022-347-2022.
Pełny tekst źródłaGroves, Declan, i Andy Way. "Hybrid data-driven models of machine translation". Machine Translation 19, nr 3-4 (2.11.2006): 301–23. http://dx.doi.org/10.1007/s10590-006-9015-5.
Pełny tekst źródłaJørgensen, Ulrik, Pauline Røstum Belingmo, Brian Murray, Svein Peder Berge i Armin Pobitzer. "Ship route optimization using hybrid physics-guided machine learning". Journal of Physics: Conference Series 2311, nr 1 (1.07.2022): 012037. http://dx.doi.org/10.1088/1742-6596/2311/1/012037.
Pełny tekst źródłaSun, Jian, Kristopher A. Innanen i Chao Huang. "Physics-guided deep learning for seismic inversion with hybrid training and uncertainty analysis". GEOPHYSICS 86, nr 3 (19.03.2021): R303—R317. http://dx.doi.org/10.1190/geo2020-0312.1.
Pełny tekst źródłaYun, Seong-Jin, Jin-Woo Kwon i Won-Tae Kim. "A Novel Digital Twin Architecture with Similarity-Based Hybrid Modeling for Supporting Dependable Disaster Management Systems". Sensors 22, nr 13 (24.06.2022): 4774. http://dx.doi.org/10.3390/s22134774.
Pełny tekst źródłaWang, Jinjiang, Yilin Li, Robert X. Gao i Fengli Zhang. "Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability". Journal of Manufacturing Systems 63 (kwiecień 2022): 381–91. http://dx.doi.org/10.1016/j.jmsy.2022.04.004.
Pełny tekst źródłaBelov, Sergei, Sergei Nikolaev i Ighor Uzhinsky. "Hybrid Data-Driven and Physics-Based Modeling for Gas Turbine Prescriptive Analytics". International Journal of Turbomachinery, Propulsion and Power 5, nr 4 (9.11.2020): 29. http://dx.doi.org/10.3390/ijtpp5040029.
Pełny tekst źródłaFernandes, Pedro Henrique Evangelista, Giovanni Corsetti Silva, Diogo Berta Pitz, Matteo Schnelle, Katharina Koschek, Christof Nagel i Vinicius Carrillo Beber. "Data-Driven, Physics-Based, or Both: Fatigue Prediction of Structural Adhesive Joints by Artificial Intelligence". Applied Mechanics 4, nr 1 (8.03.2023): 334–55. http://dx.doi.org/10.3390/applmech4010019.
Pełny tekst źródłaAl Rashdan, Ahmad Y., Hany S. Abdel-Khalik, Kellen M. Giraud, Daniel G. Cole, Jacob A. Farber, William W. Clark, Abenezer Alemu, Marcus C. Allen, Ryan M. Spangler i Athi Varuttamaseni. "A Qualitative Strategy for Fusion of Physics into Empirical Models for Process Anomaly Detection". Energies 15, nr 15 (3.08.2022): 5640. http://dx.doi.org/10.3390/en15155640.
Pełny tekst źródłaCain, Sahar, Ali Risheh i Negin Forouzesh. "A Physics-Guided Neural Network for Predicting Protein–Ligand Binding Free Energy: From Host–Guest Systems to the PDBbind Database". Biomolecules 12, nr 7 (29.06.2022): 919. http://dx.doi.org/10.3390/biom12070919.
Pełny tekst źródłaShi, Rongye, Zhaobin Mo i Xuan Di. "Physics-Informed Deep Learning for Traffic State Estimation: A Hybrid Paradigm Informed By Second-Order Traffic Models". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 1 (18.05.2021): 540–47. http://dx.doi.org/10.1609/aaai.v35i1.16132.
Pełny tekst źródłaQin, Songhai, Jianyi Liu, Xinping Yang, Yiyang Li, Lifeng Zhang i Zhibin Liu. "Predicting Heavy Oil Production by Hybrid Data-Driven Intelligent Models". Mathematical Problems in Engineering 2021 (26.08.2021): 1–15. http://dx.doi.org/10.1155/2021/5558623.
Pełny tekst źródłaGálvez, Antonio, Dammika Seneviratne i Diego Galar. "Hybrid Model Development for HVAC System in Transportation". Technologies 9, nr 1 (5.03.2021): 18. http://dx.doi.org/10.3390/technologies9010018.
Pełny tekst źródłaSimmons, Joshua, i Kristen Splinter. "COMBINING DATA-DRIVEN AND NUMERICAL MODELLING APPROACHES TO STORM EROSION PREDICTION". Coastal Engineering Proceedings, nr 36v (28.12.2020): 38. http://dx.doi.org/10.9753/icce.v36v.sediment.38.
Pełny tekst źródłaLi, Zhe, Daniel B. Wright, Sara Q. Zhang, Dalia B. Kirschbaum i Samantha H. Hartke. "Object-Based Comparison of Data-Driven and Physics-Driven Satellite Estimates of Extreme Rainfall". Journal of Hydrometeorology 21, nr 12 (grudzień 2020): 2759–76. http://dx.doi.org/10.1175/jhm-d-20-0041.1.
Pełny tekst źródłaLiu, Di, Changchun Zou, Qianggong Song, Zhonghong Wan i Haizhen Zhao. "A hybrid physics and machine learning approach for velocity prediction". Leading Edge 41, nr 6 (czerwiec 2022): 382–91. http://dx.doi.org/10.1190/tle41060382.1.
Pełny tekst źródłaHuang, Xu, Guoqiang Zu, Qi Ding, Ran Wei, Yudong Wang i Wei Wei. "An Online Control Method of Reactive Power and Voltage Based on Mechanism–Data Hybrid Drive Model Considering Source–Load Uncertainty". Energies 16, nr 8 (18.04.2023): 3501. http://dx.doi.org/10.3390/en16083501.
Pełny tekst źródłaIbáñez, Rubén, Emmanuelle Abisset-Chavanne, David González, Jean-Louis Duval, Elias Cueto i Francisco Chinesta. "Hybrid constitutive modeling: data-driven learning of corrections to plasticity models". International Journal of Material Forming 12, nr 4 (17.10.2018): 717–25. http://dx.doi.org/10.1007/s12289-018-1448-x.
Pełny tekst źródłaMa, Lijing, Shiru Qu, Lijun Song, Zhiteng Zhang i Jie Ren. "A Physics-Informed Generative Car-Following Model for Connected Autonomous Vehicles". Entropy 25, nr 7 (12.07.2023): 1050. http://dx.doi.org/10.3390/e25071050.
Pełny tekst źródłaAhmed, Shady E., Omer San, Kursat Kara, Rami Younis i Adil Rasheed. "Multifidelity computing for coupling full and reduced order models". PLOS ONE 16, nr 2 (11.02.2021): e0246092. http://dx.doi.org/10.1371/journal.pone.0246092.
Pełny tekst źródłaWilhelm, Yannick, Peter Reimann, Wolfgang Gauchel i Bernhard Mitschang. "Overview on hybrid approaches to fault detection and diagnosis: Combining data-driven, physics-based and knowledge-based models". Procedia CIRP 99 (2021): 278–83. http://dx.doi.org/10.1016/j.procir.2021.03.041.
Pełny tekst źródłaColombo, Daniele, Ersan Turkoglu, Weichang Li, Ernesto Sandoval-Curiel i Diego Rovetta. "Physics-driven deep-learning inversion with application to transient electromagnetics". GEOPHYSICS 86, nr 3 (8.04.2021): E209—E224. http://dx.doi.org/10.1190/geo2020-0760.1.
Pełny tekst źródłaSahar, Gul, Kamalrulnizam Abu Bakar, Sabit Rahim, Naveed Ali Khan Kaim Khani i Tehmina Bibi. "Recent Advancement of Data-Driven Models in Wireless Sensor Networks: A Survey". Technologies 9, nr 4 (21.10.2021): 76. http://dx.doi.org/10.3390/technologies9040076.
Pełny tekst źródłaOttersböck, Nicole, i Tim Jeske. "Potential of Cross-Operational Cooperation for Implementing Hybrid, Data-Driven Business Models". Procedia Computer Science 200 (2022): 852–57. http://dx.doi.org/10.1016/j.procs.2022.01.282.
Pełny tekst źródłaSlater, Louise J., Louise Arnal, Marie-Amélie Boucher, Annie Y. Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing i in. "Hybrid forecasting: blending climate predictions with AI models". Hydrology and Earth System Sciences 27, nr 9 (15.05.2023): 1865–89. http://dx.doi.org/10.5194/hess-27-1865-2023.
Pełny tekst źródłaAurand, Bastian, Esin Aktan, Kerstin Maria Schwind, Rajendra Prasad, Mirela Cerchez, Toma Toncian i Oswald Willi. "A laser-driven droplet source for plasma physics applications". Laser and Particle Beams 38, nr 4 (11.09.2020): 214–21. http://dx.doi.org/10.1017/s0263034620000282.
Pełny tekst źródłaLiu, Binxiao, Qiuhong Tang, Gang Zhao, Liang Gao, Chaopeng Shen i Baoxiang Pan. "Physics-Guided Long Short-Term Memory Network for Streamflow and Flood Simulations in the Lancang–Mekong River Basin". Water 14, nr 9 (29.04.2022): 1429. http://dx.doi.org/10.3390/w14091429.
Pełny tekst źródłaYao, Shunyu, Guangyuan Kan, Changjun Liu, Jinbo Tang, Deqiang Cheng, Jian Guo i Hu Jiang. "A Hybrid Theory-Driven and Data-Driven Modeling Method for Solving the Shallow Water Equations". Water 15, nr 17 (1.09.2023): 3140. http://dx.doi.org/10.3390/w15173140.
Pełny tekst źródłaZhang, Wanwan, Jørn Vatn i Adil Rasheed. "A review of failure prognostics for predictive maintenance of offshore wind turbines". Journal of Physics: Conference Series 2362, nr 1 (1.11.2022): 012043. http://dx.doi.org/10.1088/1742-6596/2362/1/012043.
Pełny tekst źródłaAlawsi, Mustafa A., Salah L. Zubaidi, Nabeel Saleem Saad Al-Bdairi, Nadhir Al-Ansari i Khalid Hashim. "Drought Forecasting: A Review and Assessment of the Hybrid Techniques and Data Pre-Processing". Hydrology 9, nr 7 (26.06.2022): 115. http://dx.doi.org/10.3390/hydrology9070115.
Pełny tekst źródłaJin, Xue-Bo, Ruben Jonhson Robert Jeremiah, Ting-Li Su, Yu-Ting Bai i Jian-Lei Kong. "The New Trend of State Estimation: From Model-Driven to Hybrid-Driven Methods". Sensors 21, nr 6 (16.03.2021): 2085. http://dx.doi.org/10.3390/s21062085.
Pełny tekst źródłaYucesan, Yigit Anil, i Felipe Viana. "Hybrid Model for Wind Turbine Main Bearing Fatigue with Uncertainty in Grease Observations". Annual Conference of the PHM Society 12, nr 1 (3.11.2020): 14. http://dx.doi.org/10.36001/phmconf.2020.v12i1.1139.
Pełny tekst źródłaGharbia, Salem, Khurram Riaz, Iulia Anton, Gabor Makrai, Laurence Gill, Leo Creedon, Marion McAfee, Paul Johnston i Francesco Pilla. "Hybrid Data-Driven Models for Hydrological Simulation and Projection on the Catchment Scale". Sustainability 14, nr 7 (29.03.2022): 4037. http://dx.doi.org/10.3390/su14074037.
Pełny tekst źródłaLaufer-Goldshtein, Bracha, Ronen Talmon i Sharon Gannot. "A Hybrid Approach for Speaker Tracking Based on TDOA and Data-Driven Models". IEEE/ACM Transactions on Audio, Speech, and Language Processing 26, nr 4 (kwiecień 2018): 725–35. http://dx.doi.org/10.1109/taslp.2018.2790707.
Pełny tekst źródłaZhu, Senlin, Marijana Hadzima-Nyarko, Ang Gao, Fangfang Wang, Jingxiu Wu i Shiqiang Wu. "Two hybrid data-driven models for modeling water-air temperature relationship in rivers". Environmental Science and Pollution Research 26, nr 12 (20.03.2019): 12622–30. http://dx.doi.org/10.1007/s11356-019-04716-y.
Pełny tekst źródłaElGhawi, Reda, Basil Kraft, Christian Reimers, Markus Reichstein, Marco Körner, Pierre Gentine i Alexander J. Winkler. "Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning". Environmental Research Letters 18, nr 3 (1.03.2023): 034039. http://dx.doi.org/10.1088/1748-9326/acbbe0.
Pełny tekst źródłaZakwan, Mohammad, i Majid Niazkar. "A Comparative Analysis of Data-Driven Empirical and Artificial Intelligence Models for Estimating Infiltration Rates". Complexity 2021 (4.05.2021): 1–13. http://dx.doi.org/10.1155/2021/9945218.
Pełny tekst źródłaVidyarthi, Vikas Kumar, i Ashu Jain. "Incorporating non-uniformity and non-linearity of hydrologic and catchment characteristics in rainfall–runoff modeling using conceptual, data-driven, and hybrid techniques". Journal of Hydroinformatics 24, nr 2 (3.02.2022): 350–66. http://dx.doi.org/10.2166/hydro.2022.088.
Pełny tekst źródłaRATH, S., P. P. SENGUPTA, A. P. SINGH, A. K. MARIK i P. TALUKDAR. "MATHEMATICAL-ARTIFICIAL NEURAL NETWORK HYBRID MODEL TO PREDICT ROLL FORCE DURING HOT ROLLING OF STEEL". International Journal of Computational Materials Science and Engineering 02, nr 01 (marzec 2013): 1350004. http://dx.doi.org/10.1142/s2047684113500048.
Pełny tekst źródłaAlthoff, Daniel, Helizani Couto Bazame i Jessica Garcia Nascimento. "Untangling hybrid hydrological models with explainable artificial intelligence". H2Open Journal 4, nr 1 (1.01.2021): 13–28. http://dx.doi.org/10.2166/h2oj.2021.066.
Pełny tekst źródłaZhao, Dengfeng, Haiyang Li, Fang Zhou, Yudong Zhong, Guosheng Zhang, Zhaohui Liu i Junjian Hou. "Research Progress on Data-Driven Methods for Battery States Estimation of Electric Buses". World Electric Vehicle Journal 14, nr 6 (2.06.2023): 145. http://dx.doi.org/10.3390/wevj14060145.
Pełny tekst źródłaRodrigues, Pedro Miguel, Pedro Ribeiro i Freni Kekhasharú Tavaria. "Distinction of Different Colony Types by a Smart-Data-Driven Tool". Bioengineering 10, nr 1 (24.12.2022): 26. http://dx.doi.org/10.3390/bioengineering10010026.
Pełny tekst źródłaZhao, Dengfeng, Haiyang Li, Junjian Hou, Pengliang Gong, Yudong Zhong, Wenbin He i Zhijun Fu. "A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption". Energies 16, nr 14 (9.07.2023): 5258. http://dx.doi.org/10.3390/en16145258.
Pełny tekst źródłaNguyen, Huu-Linh, Sang-Min Lee i Sangseok Yu. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell". Energies 16, nr 12 (16.06.2023): 4772. http://dx.doi.org/10.3390/en16124772.
Pełny tekst źródłaCamargo, Manuel, Marlon Dumas i Oscar González-Rojas. "Discovering generative models from event logs: data-driven simulation vs deep learning". PeerJ Computer Science 7 (12.07.2021): e577. http://dx.doi.org/10.7717/peerj-cs.577.
Pełny tekst źródłaGálvez, Antonio, Alberto Diez-Olivan, Dammika Seneviratne i Diego Galar. "Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach". Sustainability 13, nr 12 (16.06.2021): 6828. http://dx.doi.org/10.3390/su13126828.
Pełny tekst źródłaHwang, Jun Kwon, Patrick Nzivugira Duhirwe, Geun Young Yun, Sukho Lee, Hyeongjoon Seo, Inhan Kim i Mat Santamouris. "A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps". Sustainability 12, nr 7 (6.04.2020): 2914. http://dx.doi.org/10.3390/su12072914.
Pełny tekst źródłaDerouiche, Khouloud, Sevan Garois, Victor Champaney, Monzer Daoud, Khalil Traidi i Francisco Chinesta. "Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process". Metals 11, nr 5 (29.04.2021): 738. http://dx.doi.org/10.3390/met11050738.
Pełny tekst źródłaMekonnen, Balew A., Alireza Nazemi, Kerry A. Mazurek, Amin Elshorbagy i Gordon Putz. "Hybrid modelling approach to prairie hydrology: fusing data-driven and process-based hydrological models". Hydrological Sciences Journal 60, nr 9 (22.06.2015): 1473–89. http://dx.doi.org/10.1080/02626667.2014.935778.
Pełny tekst źródłaLiang, Ruihua, Weifeng Liu, Sakdirat Kaewunruen, Hougui Zhang i Zongzhen Wu. "Classification of External Vibration Sources through Data-Driven Models Using Hybrid CNNs and LSTMs". Structural Control and Health Monitoring 2023 (13.03.2023): 1–18. http://dx.doi.org/10.1155/2023/1900447.
Pełny tekst źródła