Gotowa bibliografia na temat „Hybrid Metal and Polymer Additive Manufacturing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hybrid Metal and Polymer Additive Manufacturing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hybrid Metal and Polymer Additive Manufacturing"
Silva, Miguel Reis, Jorge Domingues, João Costa, Artur Mateus i Cândida Malça. "Study of Metal/Polymer Interface of Parts Produced by a Hybrid Additive Manufacturing Approach". Applied Mechanics and Materials 890 (kwiecień 2019): 34–42. http://dx.doi.org/10.4028/www.scientific.net/amm.890.34.
Pełny tekst źródłaSetter, Robert, Jan Hafenecker, Richard Rothfelder, Sebastian-Paul Kopp, Stephan Roth, Michael Schmidt, Marion Merklein i Katrin Wudy. "Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing". Journal of Manufacturing and Materials Processing 7, nr 4 (24.07.2023): 133. http://dx.doi.org/10.3390/jmmp7040133.
Pełny tekst źródłaFalck, R., S. M. Goushegir, J. F. dos Santos i S. T. Amancio-Filho. "AddJoining: A novel additive manufacturing approach for layered metal-polymer hybrid structures". Materials Letters 217 (kwiecień 2018): 211–14. http://dx.doi.org/10.1016/j.matlet.2018.01.021.
Pełny tekst źródłaTosto, Claudio, Jacopo Tirillò, Fabrizio Sarasini i Gianluca Cicala. "Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts". Applied Sciences 11, nr 4 (5.02.2021): 1444. http://dx.doi.org/10.3390/app11041444.
Pełny tekst źródłaOzlati, A., M. Movahedi, M. Tamizi, Z. Tartifzadeh i S. Alipour. "An alternative additive manufacturing-based joining method to make Metal/Polymer hybrid structures". Journal of Manufacturing Processes 45 (wrzesień 2019): 217–26. http://dx.doi.org/10.1016/j.jmapro.2019.07.002.
Pełny tekst źródłaSilva, M., A. Mateus, D. Oliveira i C. Malça. "An alternative method to produce metal/plastic hybrid components for orthopedics applications". Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 231, nr 1-2 (20.08.2016): 179–86. http://dx.doi.org/10.1177/1464420716664545.
Pełny tekst źródłaChueh, Yuan-Hui, Xiaoji Zhang, Jack Chun-Ren Ke, Qian Li, Chao Wei i Lin Li. "Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion". Additive Manufacturing 36 (grudzień 2020): 101465. http://dx.doi.org/10.1016/j.addma.2020.101465.
Pełny tekst źródłaSilva, M., R. Felismina, A. Mateus, P. Parreira i C. Malça. "Application of a Hybrid Additive Manufacturing Methodology to Produce a Metal/Polymer Customized Dental Implant". Procedia Manufacturing 12 (2017): 150–55. http://dx.doi.org/10.1016/j.promfg.2017.08.019.
Pełny tekst źródłaBarakat, Ali A., Basil M. Darras, Mohammad A. Nazzal i Aser Alaa Ahmed. "A Comprehensive Technical Review of the Friction Stir Welding of Metal-to-Polymer Hybrid Structures". Polymers 15, nr 1 (31.12.2022): 220. http://dx.doi.org/10.3390/polym15010220.
Pełny tekst źródłaFernandez, Ellen, Mariya Edeleva, Rudinei Fiorio, Ludwig Cardon i Dagmar R. D’hooge. "Increasing the Sustainability of the Hybrid Mold Technique through Combined Insert Polymeric Material and Additive Manufacturing Method Design". Sustainability 14, nr 2 (13.01.2022): 877. http://dx.doi.org/10.3390/su14020877.
Pełny tekst źródłaRozprawy doktorskie na temat "Hybrid Metal and Polymer Additive Manufacturing"
Gingerich, Mark Bryant. "Joining Carbon Fiber and Aluminum with Ultrasonic Additive Manufacturing". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461161262.
Pełny tekst źródłaZhu, Zicheng. "A process planning approach for hybrid manufacture of prismatic polymer components". Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648939.
Pełny tekst źródłaFalck, Rielson [Verfasser]. "A new additive manufacturing technique for layered metal-composite hybrid structures / Rielson Miler Moreira Falck". Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2020. http://d-nb.info/1224270835/34.
Pełny tekst źródłaChen, Tianran. "Generation of Recyclable Liquid Crystalline Polymer Reinforced Composites for Use in Conventional and Additive Manufacturing Processes". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103439.
Pełny tekst źródłaDoctor of Philosophy
The large demand for high performance and light weight composite materials in various industries (e.g., automotive, aerospace, and construction) has resulted in accumulation of composite wastes in the environment. Reuse and recycling of fiber reinforced composites are beneficial from the environmental and economical point of view. However, mechanical recycling deteriorates the quality of traditional fiber reinforced composite (e.g., glass fiber and carbon fiber). There is a need to develop novel composites with greater recyclability and high-performance. Thermotropic liquid crystalline polymers (TLCP) are attractive high performance materials because of their excellent mechanical properties and light weight. The goal of this work is to generate recyclable thermotropic liquid crystalline polymer (TLCP) reinforced composites for use in injection molding and 3D printing. In the first part of this work, a novel recyclable TLCP reinforced composite was generated using the grinding and injection molding. Recycled TLCP composites were as strong as the virgin TLCP composites, and the mechanical properties of TLCP composites were found to be competitive with the glass fiber reinforced counterparts. In the second part, a hybrid TLCP and glass fiber reinforced composite with great recyclability and excellent processability was developed. The processing conditions of injection molding were optimized by rheological tests to mitigate fiber breakage and improve the processability. Finally, a high performance and light weight TLCP reinforced composite filament was generated using the dual extrusion process which allowed the processing of two polymers with different processing temperatures. This composite filament could be directly 3D printed using a benchtop 3D printer. The mechanical properties of 3D printed TLCP composites could rival 3D printed traditional fiber composites but with the potential to have a wider range of processing shapes.
Perini, Matteo. "Additive manufacturing for repairing: from damage identification and modeling to DLD processing". Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/268434.
Pełny tekst źródłaPerini, Matteo. "Additive manufacturing for repairing: from damage identification and modeling to DLD processing". Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/268434.
Pełny tekst źródłaMathias, Spencer D. "Investigation of Thermoplastic Polymers and Their Blends for Use in Hybrid Rocket Combustion". DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7416.
Pełny tekst źródłaBradford-Vialva, Robyn L. "Development of a Metal-Metal Powder Formulations Approach for Direct Metal Laser Melting of High-Strength Aluminum Alloys". University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1620259752540201.
Pełny tekst źródłaGante, Lokesha Renukaradhya Karthikesh. "Metal Filament 3D Printing of SS316L : Focusing on the printing process". Thesis, KTH, Maskinkonstruktion (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259686.
Pełny tekst źródłaSom en avancerad tillverkningsmetodik ger 3D-printing eller additiv tillverkning (AM) mycket mer uppmärksamhet vid tillverkning av komplex struktur, särskilt vid tillverkning av metallkomponenter. Ett antal olika AM-tekniker vid tillverkningen av olika typer av metallkomponenter har studerats och kommersialiserats.De flesta av dessa AM-tekniker är dyra och mindre tillgängliga, i jämförelse med Selective Laser Melting vid tillverkningen av en komponent i rostfritt stål 316L. Syftet med detta examensarbete är att introducera en innovativ AM-teknik som fokuserar på materialsträngsprutningsbaserad 3D-printingprocess för att skapa ekomponent i rostfritt stål 316Lkomponent med ett metallpolymerkompositfilament. Ett prov bestående av rostfritt stål skrevs ut med en FDM-baserad 3D-skrivare laddad med filament av polymer och metal, följt av industriell avdrivnings-och sintringsprocess. Provet studerades för att förstå materialegenskaperna och dess beteende under efterbehandlingsmetoden. Dessutom genomfördes också resultat från avdrivning och sintring på provet och en jämförelse av provet före och efter avdrivnlngssteget. Metallpolymertrådar för 3D-printing kan vara ett alternativt sätt att tillverka AM-metallkomponenter.
Dias, Rita de Cássia Costa. "Microescultura por laser de superfícies metálicas para manufatura de laminados híbridos metal/fibra". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-19042013-205354/.
Pełny tekst źródłaThis work aimed at manufacturing hybrid fiber-metal laminates (FML) by employing 0,5 mm-thick \'TI\'6\'AL\'4\'V\'-alloy plaques with fiber laser modified surface in order to optimize metal adhesion with poli-phenylene sulfide (PPS) thermoplastic polymer. The surface microtexture of metallic alloy strongly depended upon the laser power, inasmuch as low-power laser led to true texturization of metal surface, whereas high-power laser light drove to its ablation. Surface metal texturization under low-power laser apparently was the most appropriate condition to metal-polymer adhesion via mechanical entanglement of macromolecules, which was offset by high levels of residual stresses on metallic plaques, bringing them quite warped and useless. The use of an intermediate laser power (160 W) has been shown benign to the optimization between metal-polymer physical adhesion and the residual stress level created in the metal plates. It has been concluded that testpieces machined from the FML central position exhibited average ultimate interlaminar shear strenght considerably higher than those extracted from the FML borders. The FML manufactured under higher pressure and temperature was more compacted and better consolidated, so that it displayed the greatest average performance under interlaminar shear loading. Evidences of a correlation between the failure mechanism by interlaminar shearing of test coupon and its allowance to this type of mechanical loading were documented and discussed.
Części książek na temat "Hybrid Metal and Polymer Additive Manufacturing"
Wang, Hao, Yan Jin Lee, Yuchao Bai i Jiong Zhang. "Hybrid Additive Manufacturing". W Post-Processing Techniques for Metal-Based Additive Manufacturing, 203–24. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003272601-9.
Pełny tekst źródłaAl-Obaidi, Anwer, i Candice Majewski. "Ultrasonic Welding of Polymer–Metal Hybrid Joints". W Transactions on Intelligent Welding Manufacturing, 21–38. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3651-5_2.
Pełny tekst źródłaSagbas, Binnur, i Numan M. Durakbasa. "Profile and Areal Surface Characterization of Additive Manufacturing Polymer and Metal Parts". W Lecture Notes in Mechanical Engineering, 240–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18177-2_22.
Pełny tekst źródłaShakerin, Sajad, i Mohsen Mohammadi. "Hybrid Additive Manufacturing of MS1-H13 Steels via Direct Metal Laser Sintering". W TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, 277–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36296-6_26.
Pełny tekst źródłaDurga Prasada Rao, V., V. Navya Geethika i P. S. Krishnaveni. "Multi-objective Optimization of Mechanical Properties of Aluminium 7075-Based Hybrid Metal Matrix Composite Using Genetic Algorithm". W Advances in 3D Printing & Additive Manufacturing Technologies, 79–93. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0812-2_7.
Pełny tekst źródłaBorg Costanzi, Christopher. "Proposed Hybrid WAAM and Thin Sheet Metal Welding". W Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades, 99–172. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41540-2_6.
Pełny tekst źródłaRajendran, Ashokraj, Pavendhan Rajangam i Kumaragurubaran Balasubramanian. "Microstructure and mechanical properties of Al7075 and Al7075-based hybrid metal matrix composites by additive manufacturing". W Mechanical Properties and Characterization of Additively Manufactured Materials, 141–58. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003430186-10.
Pełny tekst źródłaSuresh, Ganzi. "Advancements in Manufacturing Technology With Additive Manufacturing and Its Context With Industry 4.0". W Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering, 1–24. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4939-1.ch001.
Pełny tekst źródłaSantiago, Carolyn Carradero, Eric MacDonald, Jose Coronel, Dominic Kelly, Ryan Wicker i David Espalin. "Ultrasonic and Thermal Metal Embedding for Polymer Additive Manufacturing". W Additive Manufacturing Processes, 456–61. ASM International, 2020. http://dx.doi.org/10.31399/asm.hb.v24.a0006558.
Pełny tekst źródłaBehera, Ajit. "Processes and Application in Additive Manufacturing". W Advances in Civil and Industrial Engineering, 25–47. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-4054-1.ch002.
Pełny tekst źródłaStreszczenia konferencji na temat "Hybrid Metal and Polymer Additive Manufacturing"
Whitney, Thomas J., Thao Gibson, Khalid Lafdi i Brian Welk. "A Hybrid Metal-to-Composite Joint Fabricated Through Additive Manufacturing Processes". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89540.
Pełny tekst źródłaAlaboudi, S. F. "The Innovation in wire arc additive manufacturing (WAAM): A review". W Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-54.
Pełny tekst źródłaZhao, Ningxiner, Hongqi Guo, Leon M. Headings i Marcelo J. Dapino. "Analytical and Computational Modeling of FRP-Metal Joints Made by Ultrasonic Additive Manufacturing". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96827.
Pełny tekst źródłaLi, Ye, i Ragha Rapthadu. "Bending-Additive-Machining Hybrid Manufacturing of Sheet Metal Structures". W ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3062.
Pełny tekst źródłaLandgrebe, Dirk, Roland Müller, Rico Haase, Peter Scholz, Matthias Riemer, Andre Albert, Raik Grützner i Frank Schieck. "Efficient Manufacturing Methods for Hybrid Metal-Polymer Components". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65621.
Pełny tekst źródłaTičkūnas, Titas, Mangirdas Malinauskas, Domas Paipulas, Yves Bellouard i Roaldas Gadonas. "Hybrid laser 3D microprocessing in glass/polymer micromechanical sensor: towards chemical sensing applications". W 3D Printed Optics and Additive Photonic Manufacturing, redaktorzy Georg von Freymann, Alois M. Herkommer i Manuel Flury. SPIE, 2018. http://dx.doi.org/10.1117/12.2307533.
Pełny tekst źródłaPalumbo, Joshua, Ramgopal Varma Ramaraju, Sanjeev Chandra Matthew S. Schwenger, Madison S. Kaminskyj, Francis M. Haas i Joseph F. Stanzione III. "Mixed-Material Feedstocks for Cold Spray Additive Manufacturing of Metal-Polymer Composites". W ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0186.
Pełny tekst źródłaSaleeby, Kyle S., Tom Kurfess, Tom Feldhausen i Lonnie Love. "Production of Medium-Scale Metal Additive Geometry With Hybrid Manufacturing Technology". W ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8391.
Pełny tekst źródłaChen, Jibing, Guangsong Wu, Yu Xie, Zhanwen He, Nong Wan i Yiping Wu. "Study on Performance of Metal and Polymer Composites Parts Based by Additive Manufacturing". W 2019 20th International Conference on Electronic Packaging Technology(ICEPT). IEEE, 2019. http://dx.doi.org/10.1109/icept47577.2019.245253.
Pełny tekst źródłaCarrico, James D., Nicklaus W. Traeden, Matteo Aureli i Kam K. Leang. "Fused Filament Additive Manufacturing of Ionic Polymer-Metal Composite Soft Active 3D Structures". W ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8895.
Pełny tekst źródła