Gotowa bibliografia na temat „HYBRID ELECTROCHEMICAL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HYBRID ELECTROCHEMICAL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "HYBRID ELECTROCHEMICAL"
Wu, Jing, Xun Zhou, Han Xing Liu, Zhi Dong Lin i Gao Feng Chen. "Synthesis and Electrochemical Performances of Electroactive Nano Layered Organic-Inorganic Perovskite Containing Trivalent Iron Ion". Materials Science Forum 688 (czerwiec 2011): 307–13. http://dx.doi.org/10.4028/www.scientific.net/msf.688.307.
Pełny tekst źródłaZheng, Yuhong, Da Wang, Xiaolong Li, Ziyang Wang, Qingwei Zhou, Li Fu, Yunlong Yin i David Creech. "Biometric Identification of Taxodium spp. and Their Hybrid Progenies by Electrochemical Fingerprints". Biosensors 11, nr 10 (18.10.2021): 403. http://dx.doi.org/10.3390/bios11100403.
Pełny tekst źródłaWatson, Keith J., Jin Zhu, SonBinh T. Nguyen i Chad A. Mirkin. "Redox-active polymer-nanoparticle hybrid materials". Pure and Applied Chemistry 72, nr 1-2 (1.01.2000): 67–72. http://dx.doi.org/10.1351/pac200072010067.
Pełny tekst źródłaKolkovskyi, P. I., B. K. Ostafiychuk, M. I. Kolkovskyi, N. Ya Ivanichok, S.-V. S. Sklepova i B. I. Rachiy. "Mechanisms of charge accumulation in electrochemical systems formed based on of nanoporous carbon and manganese oxide". Physics and Chemistry of Solid State 21, nr 4 (30.12.2020): 621–27. http://dx.doi.org/10.15330/pcss.21.4.621-627.
Pełny tekst źródłaBerestovskyi, D., i N. P. Hung. "Hybrid Fabrication of Stainless Steel Channels for Microfluidic Application". Advanced Materials Research 1115 (lipiec 2015): 33–36. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.33.
Pełny tekst źródłaMoyseowicz, Adam, Krzysztof Pająk, Katarzyna Gajewska i Grażyna Gryglewicz. "Synthesis of Polypyrrole/Reduced Graphene Oxide Hybrids via Hydrothermal Treatment for Energy Storage Applications". Materials 13, nr 10 (15.05.2020): 2273. http://dx.doi.org/10.3390/ma13102273.
Pełny tekst źródłaZhou, Yuqing, Weijin Qian, Weijun Huang, Boyang Liu, Hao Lin i Changkun Dong. "Carbon Nanotube-Graphene Hybrid Electrodes with Enhanced Thermo-Electrochemical Cell Properties". Nanomaterials 9, nr 10 (12.10.2019): 1450. http://dx.doi.org/10.3390/nano9101450.
Pełny tekst źródłaSoto, Dayana, i Jahir Orozco. "Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors". Molecules 27, nr 12 (15.06.2022): 3841. http://dx.doi.org/10.3390/molecules27123841.
Pełny tekst źródłaBlaudeck, Thomas, Peter Andersson Ersman, Mats Sandberg, Sebastian Heinz, Ari Laiho, Jiang Liu, Isak Engquist, Magnus Berggren i Reinhard R. Baumann. "Hybrid manufacturing of electrochemical transistors". NIP & Digital Fabrication Conference 27, nr 1 (1.01.2011): 189–92. http://dx.doi.org/10.2352/issn.2169-4451.2011.27.1.art00048_1.
Pełny tekst źródłaXu, Dan, Ruiyi Li, Guangli Wang, Haiyan Zhu i Zaijun Li. "Electrochemical detection of carbendazim in strawberry based on a ruthenium–graphene quantum dot hybrid with a three-dimensional network structure and Schottky heterojunction". New Journal of Chemistry 45, nr 45 (2021): 21308–14. http://dx.doi.org/10.1039/d1nj04602k.
Pełny tekst źródłaRozprawy doktorskie na temat "HYBRID ELECTROCHEMICAL"
Agrawal, Richa. "Hybrid Electrochemical Capacitors: Materials, Optimization, and Miniaturization". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3680.
Pełny tekst źródłaFu, Xuewei. "Graphene-V2O5 Hybrid Aerogels As Electrode Materials For Electrochemical Capacitors". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1430499247.
Pełny tekst źródłaSyed, Khurram Raza. "Electrochemical generation of hydrogen". Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/13813.
Pełny tekst źródłaMeera, P. "Nafion based hybrid polymer electrolytes and nanocomposites: design and electrochemical investigations". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2009. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2726.
Pełny tekst źródłaDjelad, Halima. "Syntesis of hybrid silica-organic materials for the development of electrochemical biosensing applications". Doctoral thesis, Universidad de Alicante, 2019. http://hdl.handle.net/10045/101152.
Pełny tekst źródłaKanakaraj, Sathya Narayan. "Processing Carbon Nanotube Fibers for Wearable Electrochemical Devices". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573224577754985.
Pełny tekst źródłaKlett, Matilda. "Electrochemical Studies of Aging in Lithium-Ion Batteries". Doctoral thesis, KTH, Tillämpad elektrokemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145057.
Pełny tekst źródłaQC 20140512
Carretero, González Nina Magali. "Iridium oxide-carbon hybrid materials as electrodes for neural systems. Electrochemical synthesis and characterization". Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/283440.
Pełny tekst źródłaThe development of neural interfaces requires new electroactive and biocompatible materials, capable to apply electric fields without secondary effects, as large impedances at the interface or radical formation, which can cause damage in the tissues and the degradation of the electrode functionality. Currently, different types of electroactive materials are available for application as electrodes in the neural system: gold, platinum, glassy carbon, Pt-Ir, TiN or IrOx, among others, being the last, the one with superior performance. Properties such as high electrochemical efficiencies, good bio-stability and significant biocompatibility, have turned out IrOx into one of the most promising material for neural recording and stimulation electrodes. However, new technological breakthroughs have generated a demand of novel materials, with enhanced properties and which also minimize the drawbacks found in the actual ones, as low stability under electrochemical conditions, small values for charge capacity or the inherent rigidity of these oxides, which involves low compatibility with soft tissues. These improvements required may be achieved by hybrid materials, which join different properties from both counterparts. In this sense, IrOx-CNTs have been electrochemically prepared with enhanced properties. The chemical composition at the surface is very similar to that for IrOx, but the incorporation of carbon nanotubes makes the surface rougher, increasing the available interface area of the material. These properties, joined with the conductivity provided by the CNTs, yield very high values for charge storage capacity in electrochemical measurements. Also, the stability of the resulting coatings is improved in comparison with bare IrOx. The biocompatibility tests have shown high cellular survival and neuron functionality, similar to those values obtained for bare IrOx or borosilicate (used for reference), which validates these new materials as promising neural electrodes. IrOx hybrids with graphite and graphene also have been prepared. In both coatings, the presence of carbon particles has been demonstrated, although the confirmation of graphene sheets instead of few-layered graphene needs more experimental studies. The electrochemical properties of these IrOx-graphene and IrOx-graphite hybrids are similar than those obtained for IrOx-CNTs electrodes, with high values of charge storage capacity. However, the stability during consecutive cycling for the graphite-hybrid is poor and the coating is finally delaminated. These results are presumably due to heterogeneous structure in graphite-hybrids, in which the big carbon particles are not completely embedded in the IrOx matrix. Also, IrOx hybrids with N-doped graphene have been prepared, showing promising properties and very high values for charge storage capacity and stability, even when compared with non-doped IrOx-graphene coatings. The enhanced conductivity of these materials can be related with the presence of nitrogen, which induces the increase of the defects in the graphene sheets. The biocompatibility of these graphitic materials is under study. Polymeric tri-hibrids, IrOx-PEDOT-CNTs, have been also electrochemically synthesized. The use of a polymeric matrix is an effort to confer more flexibility to the electrode, which is desirable for soft tissue applications. However, the first results show that the polymer may encapsulate the CNTs and the IrOx particles, minimizing the electrochemical properties of these species. As a consequence, the electrochemical performance of the hybrid material is similar to those obtained for other polymers, as PEDOT-PSS. The biocompatibility tests have shown low neuronal viability in these substrates; however, co-cultures have been proposed as a novel method to improve biocompatibility in these types of materials. The materials obtained in all cases, are well adehered coatings, which leads to an easy future perpespective for their use as electrodes or cells substrates.
SECHI, ELISA. "Development and characterization of nanoporous and hybrid materials through electrochemical techniques for energetic applications". Doctoral thesis, Università degli Studi di Cagliari, 2017. http://hdl.handle.net/11584/249611.
Pełny tekst źródłaThis PhD project, focused on the achievement of nanoporous and hybrid materials, is divided in two main topics: the first one is the synthesis of nanoporous nickel electrodes through electrochemical dealloying; the second one is the preparation of polyaniline/porous silicon hybrid materials by aniline electropolymerization on n-type porous silicon surface. Both materials have been synthetized and characterized by electrochemical methods in order to study the effect of the parameters of preparation on their properties. A particular attention was pointed out on the photoactivity and catalytic behavior. The main results show that porous nickel can be obtained by selective etching of copper from Ni-Cu deposits, under pulsed voltage conditions. The highest values of surfaces have been obtained adopting a low ratio between the corrosion and relaxation time. These surfaces result fully exploitable for the hydrogen and oxygen evolution reactions, as well as for photoelectrochemical applications. Concerning the porous silicon, the results show that an improved photoactivity can be achieved by electropolymerization of polyaniline, using the electroreduction of diazonium salt as underlayer. The hybrid samples present a higher photocurrent with respect to unmodified porous silicon, from the visible to the near-infrared region. Depending on the electrochemical conditions adopted for the synthesis, an increase in photocurrent more than one order of magnitude has been founded.
Chandrasekaran, Rajeswari. "Modeling of electrochemical energy storage and energy conversion devices". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37292.
Pełny tekst źródłaKsiążki na temat "HYBRID ELECTROCHEMICAL"
Chilton, J. E. Hybrid fiber-optic-electrochemical carbon monoxide monitor. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Znajdź pełny tekst źródłaChilton, J. E. Hybrid fiber-optic-electrochemical carbon monoxide monitor. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Znajdź pełny tekst źródłaR, Carpenter C., red. Hybrid fiber-optic-electrochemical carbon monoxide monitor. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Znajdź pełny tekst źródłaChilton, J. E. Hybrid fiber-optic-electrochemical carbon monoxide monitor. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Znajdź pełny tekst źródłaR, Carpenter C., red. Hybrid fiber-optic-electrochemical carbon monoxide monitor. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Znajdź pełny tekst źródłaFeric, Tony Gordon. Thermal, Structural and Transport Behaviors of Nanoparticle Organic Hybrid Materials Enabling the Integrated Capture and Electrochemical Conversion of Carbon Dioxide. [New York, N.Y.?]: [publisher not identified], 2022.
Znajdź pełny tekst źródła(Editor), Ralph J. Brodd, Daniel H. Doughty (Editor), K. Naoi (Editor), M. Morita (Editor), C. Nanjundiah (Editor), J. H. Kim (Editor) i G. Nagasubramanian (Editor), red. Advances in Electrochemical Capacitors and Hybrid Power Systems. Electrochemical Society, 2002.
Znajdź pełny tekst źródłaMetal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaBilal, Muhammad, Tuán Anh Nguyen, Ram K. Gupta i Tahir Rasheed. Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaBilal, Muhammad, Tuán Anh Nguyen, Ram K. Gupta i Tahir Rasheed. Metal-Organic Frameworks-based Hybrid Materials for Environmental Sensing and Monitoring. Taylor & Francis Group, 2022.
Znajdź pełny tekst źródłaCzęści książek na temat "HYBRID ELECTROCHEMICAL"
Péra, Marie-Cécile, Daniel Hissel, Hamid Gualous i Christophe Turpin. "Hybrid Electrical System". W Electrochemical Components, 277–308. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118576892.ch6.
Pełny tekst źródłaKumar, Kaushik, Divya Zindani i J. Paulo Davim. "Hybrid Electrochemical Process". W Materials Forming, Machining and Tribology, 153–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76075-9_10.
Pełny tekst źródłaGupta, Kapil, Neelesh K. Jain i R. F. Laubscher. "Electrochemical Hybrid Machining Processes". W Hybrid Machining Processes, 9–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25922-2_2.
Pełny tekst źródłaNaoi, Katsuhiko. "Electrochemical Supercapacitors electrochemical supercapacitors and Hybrid Systems hybrid systems". W Encyclopedia of Sustainability Science and Technology, 3426–43. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_501.
Pełny tekst źródłaZhao, Yu, Lele Peng i Guihua Yu. "Electrochemical Hierarchical Composites". W Hybrid and Hierarchical Composite Materials, 239–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12868-9_7.
Pełny tekst źródłaSharma, Vyom, Mahavir Singh i Janakarajan Ramkumar. "Electrochemical Spark Machining Process". W Electric Discharge Hybrid-Machining Processes, 45–69. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202301-3.
Pełny tekst źródłaNaoi, Katsuhiko. "Electrochemical Supercapacitors and Hybrid Systems". W Batteries for Sustainability, 93–115. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5791-6_4.
Pełny tekst źródłaSharma, Arun Dutt, i Rupinder Singh. "A Framework on Electrochemical Machining of ABS-15% Al Composite". W Additive, Subtractive, and Hybrid Technologies, 107–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99569-0_9.
Pełny tekst źródłaArka, Girija Nandan, Shashi Bhushan Prasad i Subhash Singh. "Electrochemical Discharge Machining for Hybrid Polymer Matrix Composites". W Fabrication and Machining of Advanced Materials and Composites, 139–57. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327370-8.
Pełny tekst źródłaBrinker, Manuel, Tobias Krekeler i Patrick Huber. "Electrochemical Actuation of a Nanoporous Polypyrrole Hybrid Material". W Album of Porous Media, 14. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_5.
Pełny tekst źródłaStreszczenia konferencji na temat "HYBRID ELECTROCHEMICAL"
Inal, Sahika. "Organic electrochemical transistors for biosensing". W Organic and Hybrid Sensors and Bioelectronics XIV, redaktorzy Ruth Shinar, Ioannis Kymissis i Emil J. List-Kratochvil. SPIE, 2021. http://dx.doi.org/10.1117/12.2595771.
Pełny tekst źródłaNguyen, Thuc-Quyen. "Novel materials for organic electrochemical transistors". W Organic and Hybrid Field-Effect Transistors XX, redaktorzy Oana D. Jurchescu i Iain McCulloch. SPIE, 2021. http://dx.doi.org/10.1117/12.2597204.
Pełny tekst źródłaGerasimov, Jennifer, Arnab Halder, Mathieu Linares, Chiara Musumeci, Sarbani Ghosh, Deyu Tu, Tobias Abrahamsson i in. "Evolvable organic electrochemical transistors (Conference Presentation)". W Organic and Hybrid Sensors and Bioelectronics XV, redaktorzy Ruth Shinar, Ioannis Kymissis i Emil J. List-Kratochvil. SPIE, 2022. http://dx.doi.org/10.1117/12.2636103.
Pełny tekst źródłaWu, Shuoen, Bogyeom Seo i Tse Nga Ng. "Sensing dissolved oxygen through organic electrochemical transistors". W Organic and Hybrid Field-Effect Transistors XIX, redaktorzy Oana D. Jurchescu i Iain McCulloch. SPIE, 2020. http://dx.doi.org/10.1117/12.2567181.
Pełny tekst źródłaNielsen, Christian B. "New semiconductor design for organic electrochemical transistors". W Organic and Hybrid Field-Effect Transistors XX, redaktorzy Oana D. Jurchescu i Iain McCulloch. SPIE, 2021. http://dx.doi.org/10.1117/12.2593416.
Pełny tekst źródłaBongartz, Lukas M., Matteo Cucchi, Karl Leo i Hans Kleemann. "On the modeling of organic electrochemical transistors". W Organic and Hybrid Sensors and Bioelectronics XV, redaktorzy Ruth Shinar, Ioannis Kymissis i Emil J. List-Kratochvil. SPIE, 2022. http://dx.doi.org/10.1117/12.2633291.
Pełny tekst źródłaRivnay, Jonathan. "Subthreshold biosensing with organic electrochemical transistors (Conference Presentation)". W Organic and Hybrid Sensors and Bioelectronics XI, redaktorzy Ruth Shinar, Ioannis Kymissis, Luisa Torsi i Emil J. List-Kratochvil. SPIE, 2018. http://dx.doi.org/10.1117/12.2322387.
Pełny tekst źródłaNg, Tse Nga, Shuoen Wu i Jason D. Azoulay. "Dual-gate organic electrochemical transistors for marine sensing". W Organic and Hybrid Field-Effect Transistors XX, redaktorzy Oana D. Jurchescu i Iain McCulloch. SPIE, 2021. http://dx.doi.org/10.1117/12.2593404.
Pełny tekst źródłaBizeray, A., D. A. Howey i S. Duncan. "Advanced battery management systems using fast electrochemical modelling". W Hybrid and Electric Vehicles Conference 2013 (HEVC 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.1890.
Pełny tekst źródłaGkoupidenis, Paschalis, Dimitrios Koutsouras, Thomas Lonjaret, Shahab Rezaei-Mazinani, Esma Ismailova, Jessamyn A. Fairfield i George G. Malliaras. "Organic neuromorphic devices based on electrochemical concepts (Conference Presentation)". W Hybrid Memory Devices and Printed Circuits 2017, redaktor Emil J. List-Kratochvil. SPIE, 2017. http://dx.doi.org/10.1117/12.2272693.
Pełny tekst źródłaRaporty organizacyjne na temat "HYBRID ELECTROCHEMICAL"
Greenway, Scott, Theodore Motyka, Claudio Corgnale i Martin Sulic. Final Technical Report: Hybrid Electrochemical Hydrogen/Metal Hydride Compressor. Office of Scientific and Technical Information (OSTI), wrzesień 2019. http://dx.doi.org/10.2172/1989289.
Pełny tekst źródłaLiu, Hong. Novel Hybrid Microbial Electrochemical System for Efficient Hydrogen Generation from Biomass. Office of Scientific and Technical Information (OSTI), kwiecień 2020. http://dx.doi.org/10.2172/1813870.
Pełny tekst źródłaMiller, John, Lewis, B. Sibley i John Wohlgemuth. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems. Office of Scientific and Technical Information (OSTI), czerwiec 1999. http://dx.doi.org/10.2172/8380.
Pełny tekst źródła