Artykuły w czasopismach na temat „Hybrid Core-Shell Nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hybrid Core-Shell Nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Barachevsky, V. A. "Photochromic Core-shell Nanoparticles". Current Chinese Science 1, nr 2 (19.04.2021): 241–50. http://dx.doi.org/10.2174/2210298101666210114100325.
Pełny tekst źródłaDaigle, Jean-Christophe, i Jerome P. Claverie. "A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water". Journal of Nanomaterials 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/609184.
Pełny tekst źródłaJain, Shweta, Mudit Kumar, Pushpendra Kumar, Jyoti Verma, Jessica M. Rosenholm, Kuldeep K. Bansal i Ankur Vaidya. "Lipid–Polymer Hybrid Nanosystems: A Rational Fusion for Advanced Therapeutic Delivery". Journal of Functional Biomaterials 14, nr 9 (23.08.2023): 437. http://dx.doi.org/10.3390/jfb14090437.
Pełny tekst źródłaIslam, Mohammad Ariful, Emma K. G. Reesor, Yingjie Xu, Harshal R. Zope, Bruce R. Zetter i Jinjun Shi. "Biomaterials for mRNA delivery". Biomaterials Science 3, nr 12 (2015): 1519–33. http://dx.doi.org/10.1039/c5bm00198f.
Pełny tekst źródłaJahns, Mandy, Dawid Peter Warwas, Marc Robert Krey, Katharina Nolte, Sandra König, Michael Fröba i Peter Behrens. "Nanoporous hybrid core–shell nanoparticles for sequential release". Journal of Materials Chemistry B 8, nr 4 (2020): 776–86. http://dx.doi.org/10.1039/c9tb01846h.
Pełny tekst źródłaArici, Elif, Dieter Meissner, F. Schäffler i N. Serdar Sariciftci. "Core/shell nanomaterials in photovoltaics". International Journal of Photoenergy 5, nr 4 (2003): 199–208. http://dx.doi.org/10.1155/s1110662x03000333.
Pełny tekst źródłaZHANG, LI, i LIANGFANG ZHANG. "LIPID–POLYMER HYBRID NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND APPLICATIONS". Nano LIFE 01, nr 01n02 (marzec 2010): 163–73. http://dx.doi.org/10.1142/s179398441000016x.
Pełny tekst źródłaHuang, Yuxiong, Aaron N. Fulton i Arturo A. Keller. "Optimization of porous structure of superparamagnetic nanoparticle adsorbents for higher and faster removal of emerging organic contaminants and PAHs". Environmental Science: Water Research & Technology 2, nr 3 (2016): 521–28. http://dx.doi.org/10.1039/c6ew00066e.
Pełny tekst źródłaLee, Eunkyung, Jiyoung Jung, Ajeong Choi, Xavier Bulliard, Jung-Hwa Kim, Youngjun Yun, Jooyoung Kim, Jeongil Park, Sangyoon Lee i Youngjong Kang. "Dually crosslinkable SiO2@polysiloxane core–shell nanoparticles for flexible gate dielectric insulators". RSC Advances 7, nr 29 (2017): 17841–47. http://dx.doi.org/10.1039/c6ra28230j.
Pełny tekst źródłavon der Lühe, Moritz, Ulrike Günther, Andreas Weidner, Christine Gräfe, Joachim H. Clement, Silvio Dutz i Felix H. Schacher. "SPION@polydehydroalanine hybrid particles". RSC Advances 5, nr 40 (2015): 31920–29. http://dx.doi.org/10.1039/c5ra01737h.
Pełny tekst źródłaPereira, Rute, Tito Trindade i Joana Barata. "Magnetite–Corrole Hybrid Nanoparticles". Magnetochemistry 4, nr 3 (22.08.2018): 37. http://dx.doi.org/10.3390/magnetochemistry4030037.
Pełny tekst źródłaRibeiro, T., E. Coutinho, A. S. Rodrigues, C. Baleizão i J. P. S. Farinha. "Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release". Nanoscale 9, nr 36 (2017): 13485–94. http://dx.doi.org/10.1039/c7nr03395h.
Pełny tekst źródłaDaneshfar, Nader, i Majid Moradi. "An analytical solution for light scattering by metallic cylindrical nanoparticles with core–shell structure". Modern Physics Letters B 30, nr 05 (20.02.2016): 1650041. http://dx.doi.org/10.1142/s021798491650041x.
Pełny tekst źródłaSzczęch, Marta, i Krzysztof Szczepanowicz. "Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method". Nanomaterials 10, nr 3 (10.03.2020): 496. http://dx.doi.org/10.3390/nano10030496.
Pełny tekst źródłaWen, Hui Ying, Hai Feng Fang i Shen Ling Xiao. "Preparation and Characterization of Magnetic Functional Hybrid Particles". Applied Mechanics and Materials 101-102 (wrzesień 2011): 918–21. http://dx.doi.org/10.4028/www.scientific.net/amm.101-102.918.
Pełny tekst źródłaPustovalov, V. K., i L. G. Astafyeva. "DEPENDENCE OF OPTICAL PROPERTIES OF TWO-LAYERED METAL-DIELECTRIC SPHERICAL NANOPARTICLES ON TEMPERATURE". Journal of Applied Spectroscopy 89, nr 4 (20.07.2022): 470–76. http://dx.doi.org/10.47612/0514-7506-2022-89-4-470-476.
Pełny tekst źródłaKerkhofs, Stef, Frederic Leroux, Lionel Allouche, Randy Mellaerts, Jasper Jammaer, Alexander Aerts, Christine E. A. Kirschhock i in. "Single-step alcohol-free synthesis of core–shell nanoparticles of β-casein micelles and silica". RSC Adv. 4, nr 49 (2014): 25650–57. http://dx.doi.org/10.1039/c4ra03252g.
Pełny tekst źródłaBontempi, Nicolò, Emanuele Cavaliere, Valentina Cappello, Pasqualantonio Pingue i Luca Gavioli. "Ag@TiO2 nanogranular films by gas phase synthesis as hybrid SERS platforms". Physical Chemistry Chemical Physics 21, nr 45 (2019): 25090–97. http://dx.doi.org/10.1039/c9cp03998h.
Pełny tekst źródłaLopes Dias, Marcos, Marcos A. S. Pedroso, C. Cheila G. Mothé i Chiaki Azuma. "Core Shell Silica-Silicon Hybrid Nanoparticles: Synthesis and Characterization". Journal of Metastable and Nanocrystalline Materials 22 (sierpień 2004): 83–90. http://dx.doi.org/10.4028/www.scientific.net/jmnm.22.83.
Pełny tekst źródłaVoronina, N. V., I. B. Meshkov, V. D. Myakushev, N. V. Demchenko, T. V. Laptinskaya i A. M. Muzafarov. "Inorganic core/organic shell hybrid nanoparticles: Synthesis and characterization". Nanotechnologies in Russia 3, nr 5-6 (czerwiec 2008): 321–29. http://dx.doi.org/10.1134/s1995078008050078.
Pełny tekst źródłaZelepukin, I. V., V. O. Shipunova, A. B. Mirkasymov, P. I. Nikitin, M. P. Nikitin i S. M. Deyev. "Synthesis and Characterization of Hybrid Core-Shell Fe3O4/SiO2 Nanoparticles for Biomedical Applications". Acta Naturae 9, nr 4 (15.12.2017): 58–65. http://dx.doi.org/10.32607/20758251-2017-9-4-58-65.
Pełny tekst źródłaLiu, Fulei, Xiaoxian Huang, Lingfei Han, Mangmang Sang, Lejian Hu, Bowen Liu, Bingjing Duan i in. "Improved druggability of gambogic acid using core–shell nanoparticles". Biomaterials Science 7, nr 3 (2019): 1028–42. http://dx.doi.org/10.1039/c8bm01154k.
Pełny tekst źródłaXia, Jia, Xia Luo, Jin Huang, Jiajun Ma i Junxiao Yang. "Preparation of core/shell organic–inorganic hybrid polymer nanoparticles and their application to toughening poly(methyl methacrylate)". RSC Advances 11, nr 54 (2021): 34036–47. http://dx.doi.org/10.1039/d1ra03880j.
Pełny tekst źródłaKhatami, Mehrdad, Hajar Alijani, Meysam Nejad i Rajender Varma. "Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products". Applied Sciences 8, nr 3 (10.03.2018): 411. http://dx.doi.org/10.3390/app8030411.
Pełny tekst źródłaXu, Xia, Yan Long, Pengpeng Lei, Lile Dong, Kaimin Du, Jing Feng i Hongjie Zhang. "A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles". Journal of Materials Chemistry C 5, nr 37 (2017): 9666–72. http://dx.doi.org/10.1039/c7tc02665j.
Pełny tekst źródłaWang, Jianying, Kai Song, Lei Wang, Yijing Liu, Ben Liu, Jintao Zhu, Xiaolin Xie i Zhihong Nie. "Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles". Materials Horizons 3, nr 1 (2016): 78–82. http://dx.doi.org/10.1039/c5mh00024f.
Pełny tekst źródłaYu, Wei, Nikunjkumar Visaveliya, Christophe A. Serra, J. Michael Köhler, Shukai Ding, Michel Bouquey, René Muller, Marc Schmutz i Isabelle Kraus. "Preparation and Deep Characterization of Composite/Hybrid Multi-Scale and Multi-Domain Polymeric Microparticles". Materials 12, nr 23 (27.11.2019): 3921. http://dx.doi.org/10.3390/ma12233921.
Pełny tekst źródłaSpadaro, Donatella, Maria A. Iatì, Maria G. Donato, Pietro G. Gucciardi, Rosalba Saija, Anurag R. Cherlakola, Stefano Scaramuzza, Vincenzo Amendola i Onofrio M. Maragò. "Scaling of optical forces on Au–PEG core–shell nanoparticles". RSC Advances 5, nr 113 (2015): 93139–46. http://dx.doi.org/10.1039/c5ra20922f.
Pełny tekst źródłaKim, Seokho, Bo-Hyun Kim, Young Ki Hong, Chunzhi Cui, Jinho Choi, Dong Hyuk Park i Sung Ho Song. "In Situ Enhanced Raman and Photoluminescence of Bio-Hybrid Ag/Polymer Nanoparticles by Localized Surface Plasmon for Highly Sensitive DNA Sensors". Polymers 12, nr 3 (10.03.2020): 631. http://dx.doi.org/10.3390/polym12030631.
Pełny tekst źródłaPappas, George S., Chaoying Wan, Chris Bowen, David M. Haddleton i Xiaobin Huang. "Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materials". RSC Advances 7, nr 32 (2017): 19674–83. http://dx.doi.org/10.1039/c7ra02186k.
Pełny tekst źródłaWang, Yanxia, Heng Yang, Si Chen, Hua Chen i Zhihua Chai. "Fabrication of Hybrid Polymeric Micelles Containing AuNPs and Metalloporphyrin in the Core". Polymers 11, nr 3 (27.02.2019): 390. http://dx.doi.org/10.3390/polym11030390.
Pełny tekst źródłaJiang, Lai, Hiang Wee Lee i Say Chye Joachim Loo. "Therapeutic lipid-coated hybrid nanoparticles against bacterial infections". RSC Advances 10, nr 14 (2020): 8497–517. http://dx.doi.org/10.1039/c9ra10921h.
Pełny tekst źródłaWong, John E., Akhilesh K. Gaharwar, Detlef Müller-Schulte, Dhirendra Bahadur i Walter Richtering. "Magnetic Nanoparticle–Polyelectrolyte Interaction: A Layered Approach for Biomedical Applications". Journal of Nanoscience and Nanotechnology 8, nr 8 (1.08.2008): 4033–40. http://dx.doi.org/10.1166/jnn.2008.an02.
Pełny tekst źródłaSaykova, Diana, Svetlana Saikova, Yuri Mikhlin, Marina Panteleeva, Ruslan Ivantsov i Elena Belova. "Synthesis and Characterization of Core–Shell Magnetic Nanoparticles NiFe2O4@Au". Metals 10, nr 8 (10.08.2020): 1075. http://dx.doi.org/10.3390/met10081075.
Pełny tekst źródłaZhang, Ranran, Risheng Yao, Binbin Ding, Yuxin Shen, Shengwen Shui, Lei Wang, Yu Li, Xianzhu Yang i Wei Tao. "Fabrication of Upconverting Hybrid Nanoparticles for Near-Infrared Light Triggered Drug Release". Advances in Materials Science and Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/169210.
Pełny tekst źródłaLiu, A., L. Yang, M. Verwegen, D. Reardon i J. J. L. M. Cornelissen. "Construction of core-shell hybrid nanoparticles templated by virus-like particles". RSC Advances 7, nr 89 (2017): 56328–34. http://dx.doi.org/10.1039/c7ra11310b.
Pełny tekst źródłaHWANG, TAEJIN, HEUNGYEOL LEE, HOHYEONG KIM, GYUNTAK KIM i GYEONGJIN MUN. "ENHANCEMENT OF ELECTROCHROMIC DURABILITY OF A FILM MADE OF SILICA-POLYANILINE CORE-SHELL NANOPARTICLES". Surface Review and Letters 17, nr 01 (luty 2010): 39–44. http://dx.doi.org/10.1142/s0218625x10013722.
Pełny tekst źródłaLi, Joshua Qing Song, Hai Wang i Yan Qiu Wang. "Preparation of Silica/Polymer Hybrid Nanoparticles via a Semi-Continuous Soup-Free Emulsion Polymerization". Advanced Materials Research 1120-1121 (lipiec 2015): 233–42. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.233.
Pełny tekst źródłaKhadam, Mohsin, Habib Ullah, Saif Ullah, M. Athar Faheem Riaz i Hamza Khan Lodhi. "Polymer Stabilized Metal Nanoparticles for Catalytic Degradation of Methylene Blue in Water". International Journal of Economic and Environmental Geology 13, nr 3 (24.06.2022): 15–21. http://dx.doi.org/10.46660/ijeeg.v13i3.38.
Pełny tekst źródłaKobayashi, Yoichi, Yoshiyuki Nonoguchi, Li Wang, Tsuyoshi Kawai i Naoto Tamai. "Dual Transient Bleaching of Au/PbS Hybrid Core/Shell Nanoparticles". Journal of Physical Chemistry Letters 3, nr 9 (12.04.2012): 1111–16. http://dx.doi.org/10.1021/jz300248p.
Pełny tekst źródłaPacaud, Benjamin, Loïc Leclercq, Jean-François Dechézelles i Véronique Nardello-Rataj. "Hybrid Core-Shell Nanoparticles by “Plug and Play” Self-Assembly". Chemistry - A European Journal 24, nr 67 (31.10.2018): 17672–76. http://dx.doi.org/10.1002/chem.201804155.
Pełny tekst źródłaCapek, Ignác. "Noble Metal Nanoparticles and Their (Bio) Conjugates. II. Preparation". International Journal of Chemistry 8, nr 1 (6.01.2016): 86. http://dx.doi.org/10.5539/ijc.v8n1p86.
Pełny tekst źródłaHahn, Braden. "78511 Synthesis of Novel Core/Shell Polymeric Nanoparticles for Controlled Drug Release". Journal of Clinical and Translational Science 5, s1 (marzec 2021): 100. http://dx.doi.org/10.1017/cts.2021.657.
Pełny tekst źródłaGu, Haoshuai, Hui Zhang, Xinyue Zhang, Yani Guo, Limeng Yang, Hailiang Wu i Ningtao Mao. "Photocatalytic Properties of Core-Shell Structured Wool-TiO2 Hybrid Composite Powders". Catalysts 11, nr 1 (24.12.2020): 12. http://dx.doi.org/10.3390/catal11010012.
Pełny tekst źródłaEl-Habashy, Salma E., Amal H. El-Kamel, Marwa M. Essawy, Elsayeda-Zeinab A. Abdelfattah i Hoda M. Eltaher. "Engineering 3D-printed core–shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration". Biomaterials Science 9, nr 11 (2021): 4019–39. http://dx.doi.org/10.1039/d1bm00062d.
Pełny tekst źródłaZhou, Jing, Jie Hu, Mu Li, Hui Li, Weiyu Wang, Yuzi Liu, Randall E. Winans, Tao Li, Tianbo Liu i Panchao Yin. "Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles". Materials Chemistry Frontiers 2, nr 11 (2018): 2070–75. http://dx.doi.org/10.1039/c8qm00291f.
Pełny tekst źródłaZhang, Ruirui, Shuang Wei, Leihou Shao, Lili Tong i Yan Wu. "Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles". Polymers 14, nr 9 (28.04.2022): 1813. http://dx.doi.org/10.3390/polym14091813.
Pełny tekst źródłaBajpai, Ankur, i Stéphane Carlotti. "The Effect of Hybridized Carbon Nanotubes, Silica Nanoparticles, and Core-Shell Rubber on Tensile, Fracture Mechanics and Electrical Properties of Epoxy Nanocomposites". Nanomaterials 9, nr 7 (23.07.2019): 1057. http://dx.doi.org/10.3390/nano9071057.
Pełny tekst źródłaMikoliunaite, Lina, Evaldas Stankevičius, Sonata Adomavičiūtė-Grabusovė, Vita Petrikaitė, Romualdas Trusovas, Martynas Talaikis, Martynas Skapas i in. "Magneto-Plasmonic Nanoparticles Generated by Laser Ablation of Layered Fe/Au and Fe/Au/Fe Composite Films for SERS Application". Coatings 13, nr 9 (30.08.2023): 1523. http://dx.doi.org/10.3390/coatings13091523.
Pełny tekst źródłaHou, Guoling, Lei Zhu, Daoyong Chen i Ming Jiang. "Core−Shell Reversion of Hybrid Polymeric Micelles Containing Gold Nanoparticles in the Core". Macromolecules 40, nr 6 (marzec 2007): 2134–40. http://dx.doi.org/10.1021/ma062373b.
Pełny tekst źródła