Artykuły w czasopismach na temat „HYBRID CNN-RNN MODEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „HYBRID CNN-RNN MODEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zaheer, Shahzad, Nadeem Anjum, Saddam Hussain, Abeer D. Algarni, Jawaid Iqbal, Sami Bourouis i Syed Sajid Ullah. "A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model". Mathematics 11, nr 3 (22.01.2023): 590. http://dx.doi.org/10.3390/math11030590.
Pełny tekst źródłaAshraf, Mohsin, Fazeel Abid, Ikram Ud Din, Jawad Rasheed, Mirsat Yesiltepe, Sook Fern Yeo i Merve T. Ersoy. "A Hybrid CNN and RNN Variant Model for Music Classification". Applied Sciences 13, nr 3 (22.01.2023): 1476. http://dx.doi.org/10.3390/app13031476.
Pełny tekst źródłaKrishnan, V. Gokula, M. V. Vijaya Saradhi, T. A. Mohana Prakash, K. Gokul Kannan i AG Noorul Julaiha. "Development of Deep Learning based Intelligent Approach for Credit Card Fraud Detection". International Journal on Recent and Innovation Trends in Computing and Communication 10, nr 12 (31.12.2022): 133–39. http://dx.doi.org/10.17762/ijritcc.v10i12.5894.
Pełny tekst źródłaYu, Dian, i Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition". Information 11, nr 4 (15.04.2020): 212. http://dx.doi.org/10.3390/info11040212.
Pełny tekst źródłaBehera, Bibhuti Bhusana, Binod Kumar Pattanayak i Rajani Kanta Mohanty. "Deep Ensemble Model for Detecting Attacks in Industrial IoT". International Journal of Information Security and Privacy 16, nr 1 (1.01.2022): 1–29. http://dx.doi.org/10.4018/ijisp.311467.
Pełny tekst źródłaCheng, Yepeng, Zuren Liu i Yasuhiko Morimoto. "Attention-Based SeriesNet: An Attention-Based Hybrid Neural Network Model for Conditional Time Series Forecasting". Information 11, nr 6 (5.06.2020): 305. http://dx.doi.org/10.3390/info11060305.
Pełny tekst źródłaPawar, Mahendra Eknath, Rais Allauddin Mulla, Sanjivani H. Kulkarni, Sajeeda Shikalgar, Harikrishna B. Jethva i Gunvant A. Patel. "A Novel Hybrid AI Federated ML/DL Models for Classification of Soil Components". International Journal on Recent and Innovation Trends in Computing and Communication 10, nr 1s (10.12.2022): 190–99. http://dx.doi.org/10.17762/ijritcc.v10i1s.5823.
Pełny tekst źródłaUTKU, Anıl. "Kentsel Trafik Tahminine Yönelik Derin Öğrenme Tabanlı Verimli Bir Hibrit Model". Bilişim Teknolojileri Dergisi 16, nr 2 (30.04.2023): 107–17. http://dx.doi.org/10.17671/gazibtd.1167140.
Pełny tekst źródłaLiang, Youzhi, Wen Liang i Jianguo Jia. "Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN". Advances in Artificial Intelligence and Machine Learning 03, nr 02 (2023): 1110–22. http://dx.doi.org/10.54364/aaiml.2023.1165.
Pełny tekst źródłaZhang, Langlang, Jun Xie, Xinxiu Liu, Wenbo Zhang i Pan Geng. "Research on water quality prediction based on PE-CNN-GRU hybrid model". E3S Web of Conferences 393 (2023): 02014. http://dx.doi.org/10.1051/e3sconf/202339302014.
Pełny tekst źródłaKhamparia, Aditya, Babita Pandey, Shrasti Tiwari, Deepak Gupta, Ashish Khanna i Joel J. P. C. Rodrigues. "An Integrated Hybrid CNN–RNN Model for Visual Description and Generation of Captions". Circuits, Systems, and Signal Processing 39, nr 2 (11.11.2019): 776–88. http://dx.doi.org/10.1007/s00034-019-01306-8.
Pełny tekst źródłaUly, Novem, Hendry Hendry i Ade Iriani. "CNN-RNN Hybrid Model for Diagnosis of COVID-19 on X-Ray Imagery". Digital Zone: Jurnal Teknologi Informasi dan Komunikasi 14, nr 1 (27.05.2023): 57–67. http://dx.doi.org/10.31849/digitalzone.v14i1.13668.
Pełny tekst źródłaArshad, Muhammad Zeeshan, Ankhzaya Jamsrandorj, Jinwook Kim i Kyung-Ryoul Mun. "Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor". Sensors 22, nr 21 (27.10.2022): 8226. http://dx.doi.org/10.3390/s22218226.
Pełny tekst źródłaGong, Liyun, Miao Yu, Vassilis Cutsuridis, Stefanos Kollias i Simon Pearson. "A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction". Horticulturae 9, nr 1 (20.12.2022): 5. http://dx.doi.org/10.3390/horticulturae9010005.
Pełny tekst źródłaKang, Taehyung, Dae Yeong Lim, Hilal Tayara i Kil To Chong. "Forecasting of Power Demands Using Deep Learning". Applied Sciences 10, nr 20 (16.10.2020): 7241. http://dx.doi.org/10.3390/app10207241.
Pełny tekst źródłaHasbullah, Sumayyah, Mohd Soperi Mohd Zahid i Satria Mandala. "Detection of Myocardial Infarction Using Hybrid Models of Convolutional Neural Network and Recurrent Neural Network". BioMedInformatics 3, nr 2 (15.06.2023): 478–92. http://dx.doi.org/10.3390/biomedinformatics3020033.
Pełny tekst źródłaRong, Guangzhi, Kaiwei Li, Yulin Su, Zhijun Tong, Xingpeng Liu, Jiquan Zhang, Yichen Zhang i Tiantao Li. "Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment". Remote Sensing 13, nr 22 (20.11.2021): 4694. http://dx.doi.org/10.3390/rs13224694.
Pełny tekst źródłaSharma, Richa, Sudha Morwal i Basant Agarwal. "Entity-Extraction Using Hybrid Deep-Learning Approach for Hindi text". International Journal of Cognitive Informatics and Natural Intelligence 15, nr 3 (lipiec 2021): 1–11. http://dx.doi.org/10.4018/ijcini.20210701.oa1.
Pełny tekst źródłaGuo, Yanan, Xiaoqun Cao, Bainian Liu i Kecheng Peng. "El Niño Index Prediction Using Deep Learning with Ensemble Empirical Mode Decomposition". Symmetry 12, nr 6 (1.06.2020): 893. http://dx.doi.org/10.3390/sym12060893.
Pełny tekst źródłaMas-Pujol, Sergi, Esther Salamí i Enric Pastor. "RNN-CNN Hybrid Model to Predict C-ATC CAPACITY Regulations for En-Route Traffic". Aerospace 9, nr 2 (10.02.2022): 93. http://dx.doi.org/10.3390/aerospace9020093.
Pełny tekst źródłaLapa, Paulo, Mauro Castelli, Ivo Gonçalves, Evis Sala i Leonardo Rundo. "A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI". Applied Sciences 10, nr 1 (2.01.2020): 338. http://dx.doi.org/10.3390/app10010338.
Pełny tekst źródłaBeseiso, Majdi. "Word and Character Information Aware Neural Model for Emotional Analysis". Recent Patents on Computer Science 12, nr 2 (25.02.2019): 142–47. http://dx.doi.org/10.2174/2213275911666181119112645.
Pełny tekst źródłaAmer, Rusul, i Ahmed Al Tmeme. "Hybrid Deep Learning Model for Singing Voice Separation". MENDEL 27, nr 2 (21.12.2021): 44–50. http://dx.doi.org/10.13164/mendel.2021.2.044.
Pełny tekst źródłaZhang, Dong, i Qichuan Tian. "A Novel Fuzzy Optimized CNN-RNN Method for Facial Expression Recognition". Elektronika ir Elektrotechnika 27, nr 5 (27.10.2021): 67–74. http://dx.doi.org/10.5755/j02.eie.29648.
Pełny tekst źródłaWang, Yu, Yining Sun, Zuchang Ma, Lisheng Gao i Yang Xu. "A Hybrid Model for Named Entity Recognition on Chinese Electronic Medical Records". ACM Transactions on Asian and Low-Resource Language Information Processing 20, nr 2 (23.04.2021): 1–12. http://dx.doi.org/10.1145/3436819.
Pełny tekst źródłaRoy, Bishwajit, Lokesh Malviya, Radhikesh Kumar, Sandip Mal, Amrendra Kumar, Tanmay Bhowmik i Jong Wan Hu. "Hybrid Deep Learning Approach for Stress Detection Using Decomposed EEG Signals". Diagnostics 13, nr 11 (1.06.2023): 1936. http://dx.doi.org/10.3390/diagnostics13111936.
Pełny tekst źródłaYadav, Omprakash, Rachael Dsouza, Rhea Dsouza i Janice Jose. "Soccer Action video Classification using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, nr 6 (30.06.2022): 1060–63. http://dx.doi.org/10.22214/ijraset.2022.43929.
Pełny tekst źródłaMekruksavanich, Sakorn, i Anuchit Jitpattanakul. "Deep Convolutional Neural Network with RNNs for Complex Activity Recognition Using Wrist-Worn Wearable Sensor Data". Electronics 10, nr 14 (14.07.2021): 1685. http://dx.doi.org/10.3390/electronics10141685.
Pełny tekst źródłaFarid, Ahmed Bahaa, Enas Mohamed Fathy, Ahmed Sharaf Eldin i Laila A. Abd-Elmegid. "Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)". PeerJ Computer Science 7 (16.11.2021): e739. http://dx.doi.org/10.7717/peerj-cs.739.
Pełny tekst źródłaÇAVDAR, İsmail, i Vahid FARYAD. "New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid". Energies 12, nr 7 (29.03.2019): 1217. http://dx.doi.org/10.3390/en12071217.
Pełny tekst źródłaWEN, HAO, WENJIAN YU, YUANQING WU, SHUAI YANG i XIAOLONG LIU. "A SCALABLE HYBRID MODEL FOR ATRIAL FIBRILLATION DETECTION". Journal of Mechanics in Medicine and Biology 21, nr 05 (17.04.2021): 2140021. http://dx.doi.org/10.1142/s0219519421400212.
Pełny tekst źródłaRafi, Quazi Ghulam, Mohammed Noman, Sadia Zahin Prodhan, Sabrina Alam i Dip Nandi. "Comparative Analysis of Three Improved Deep Learning Architectures for Music Genre Classification". International Journal of Information Technology and Computer Science 13, nr 2 (8.04.2021): 1–14. http://dx.doi.org/10.5815/ijitcs.2021.02.01.
Pełny tekst źródłaDhar, Puja, Vijay Kumar Garg i Mohammad Anisur Rahman. "Enhanced Feature Extraction-based CNN Approach for Epileptic Seizure Detection from EEG Signals". Journal of Healthcare Engineering 2022 (16.03.2022): 1–14. http://dx.doi.org/10.1155/2022/3491828.
Pełny tekst źródłaHe, Yijuan, Jidong Lv, Hongjie Liu i Tao Tang. "Toward the Trajectory Predictor for Automatic Train Operation System Using CNN–LSTM Network". Actuators 11, nr 9 (31.08.2022): 247. http://dx.doi.org/10.3390/act11090247.
Pełny tekst źródłaUmair, Muhammad, Muhammad Zubair, Farhan Dawood, Sarim Ashfaq, Muhammad Shahid Bhatti, Mohammad Hijji i Abid Sohail. "A Multi-Layer Holistic Approach for Cursive Text Recognition". Applied Sciences 12, nr 24 (9.12.2022): 12652. http://dx.doi.org/10.3390/app122412652.
Pełny tekst źródłaMoradzadeh, Arash, Sahar Zakeri, Waleed A. Oraibi, Behnam Mohammadi-Ivatloo, Zulkurnain Abdul-Malek i Reza Ghorbani. "Non-Intrusive Load Monitoring of Residential Loads via Laplacian Eigenmaps and Hybrid Deep Learning Procedures". Sustainability 14, nr 22 (11.11.2022): 14898. http://dx.doi.org/10.3390/su142214898.
Pełny tekst źródłaBao, Zhengyi, Jiahao Jiang, Chunxiang Zhu i Mingyu Gao. "A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery". Energies 15, nr 12 (16.06.2022): 4399. http://dx.doi.org/10.3390/en15124399.
Pełny tekst źródłaAlrasheedi, Abdullah, i Abdulaziz Almalaq. "Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting". Mathematics 10, nr 15 (28.07.2022): 2666. http://dx.doi.org/10.3390/math10152666.
Pełny tekst źródłaTran Quang, Duy, i Sang Hoon Bae. "A Hybrid Deep Convolutional Neural Network Approach for Predicting the Traffic Congestion Index". Promet - Traffic&Transportation 33, nr 3 (31.05.2021): 373–85. http://dx.doi.org/10.7307/ptt.v33i3.3657.
Pełny tekst źródłaHong, Taekeun, Jin-A. Choi, Kiho Lim i Pankoo Kim. "Enhancing Personalized Ads Using Interest Category Classification of SNS Users Based on Deep Neural Networks". Sensors 21, nr 1 (30.12.2020): 199. http://dx.doi.org/10.3390/s21010199.
Pełny tekst źródłaRajagukguk, Rial A., Raden A. A. Ramadhan i Hyun-Jin Lee. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power". Energies 13, nr 24 (15.12.2020): 6623. http://dx.doi.org/10.3390/en13246623.
Pełny tekst źródłaSelvarani, Renjith Vijayakumar, i Paul Subha Hency Jose. "A Label-Free Marker Based Breast Cancer Detection using Hybrid Deep Learning Models and Raman Spectroscopy". Trends in Sciences 20, nr 4 (22.01.2023): 6299. http://dx.doi.org/10.48048/tis.2023.6299.
Pełny tekst źródłaChung, Jaewon, i Beakcheol Jang. "Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data". PLOS ONE 17, nr 11 (23.11.2022): e0278071. http://dx.doi.org/10.1371/journal.pone.0278071.
Pełny tekst źródłaGeng, Boting. "Open Relation Extraction in Patent Claims with a Hybrid Network". Wireless Communications and Mobile Computing 2021 (28.04.2021): 1–7. http://dx.doi.org/10.1155/2021/5547281.
Pełny tekst źródłaAl Duhayyim, Mesfer, Hanan Abdullah Mengash, Radwa Marzouk, Mohamed K. Nour, Hany Mahgoub, Fahd Althukair i Abdullah Mohamed. "Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification". Computational Intelligence and Neuroscience 2022 (30.06.2022): 1–11. http://dx.doi.org/10.1155/2022/6162445.
Pełny tekst źródłaSong, Fuquan, Heying Ding, Yongzheng Wang, Shiming Zhang i Jinbiao Yu. "A Well Production Prediction Method of Tight Reservoirs Based on a Hybrid Neural Network". Energies 16, nr 6 (21.03.2023): 2904. http://dx.doi.org/10.3390/en16062904.
Pełny tekst źródłaAltalak, Maha, Mohammad Ammad uddin, Amal Alajmi i Alwaseemah Rizg. "Smart Agriculture Applications Using Deep Learning Technologies: A Survey". Applied Sciences 12, nr 12 (10.06.2022): 5919. http://dx.doi.org/10.3390/app12125919.
Pełny tekst źródłaLee, Chien-Hsing, Phuong Nguyen Thanh, Chao-Tsung Yeh i Ming-Yuan Cho. "Three-Phase Load Prediction-Based Hybrid Convolution Neural Network Combined Bidirectional Long Short-Term Memory in Solar Power Plant". International Transactions on Electrical Energy Systems 2022 (16.09.2022): 1–15. http://dx.doi.org/10.1155/2022/2870668.
Pełny tekst źródłaJishan, Md Asifuzzaman, Khan Raqib Mahmud, Abul Kalam Al Azad, Md Shahabub Alam i Anif Minhaz Khan. "Hybrid deep neural network for Bangla automated image descriptor". International Journal of Advances in Intelligent Informatics 6, nr 2 (12.07.2020): 109. http://dx.doi.org/10.26555/ijain.v6i2.499.
Pełny tekst źródłaKhortsriwong, Nonthawat, Promphak Boonraksa, Terapong Boonraksa, Thipwan Fangsuwannarak, Asada Boonsrirat, Watcharakorn Pinthurat i Boonruang Marungsri. "Performance of Deep Learning Techniques for Forecasting PV Power Generation: A Case Study on a 1.5 MWp Floating PV Power Plant". Energies 16, nr 5 (22.02.2023): 2119. http://dx.doi.org/10.3390/en16052119.
Pełny tekst źródła