Gotowa bibliografia na temat „HYBRID CNN-RNN MODEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HYBRID CNN-RNN MODEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "HYBRID CNN-RNN MODEL"
Zaheer, Shahzad, Nadeem Anjum, Saddam Hussain, Abeer D. Algarni, Jawaid Iqbal, Sami Bourouis i Syed Sajid Ullah. "A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model". Mathematics 11, nr 3 (22.01.2023): 590. http://dx.doi.org/10.3390/math11030590.
Pełny tekst źródłaAshraf, Mohsin, Fazeel Abid, Ikram Ud Din, Jawad Rasheed, Mirsat Yesiltepe, Sook Fern Yeo i Merve T. Ersoy. "A Hybrid CNN and RNN Variant Model for Music Classification". Applied Sciences 13, nr 3 (22.01.2023): 1476. http://dx.doi.org/10.3390/app13031476.
Pełny tekst źródłaKrishnan, V. Gokula, M. V. Vijaya Saradhi, T. A. Mohana Prakash, K. Gokul Kannan i AG Noorul Julaiha. "Development of Deep Learning based Intelligent Approach for Credit Card Fraud Detection". International Journal on Recent and Innovation Trends in Computing and Communication 10, nr 12 (31.12.2022): 133–39. http://dx.doi.org/10.17762/ijritcc.v10i12.5894.
Pełny tekst źródłaYu, Dian, i Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition". Information 11, nr 4 (15.04.2020): 212. http://dx.doi.org/10.3390/info11040212.
Pełny tekst źródłaBehera, Bibhuti Bhusana, Binod Kumar Pattanayak i Rajani Kanta Mohanty. "Deep Ensemble Model for Detecting Attacks in Industrial IoT". International Journal of Information Security and Privacy 16, nr 1 (1.01.2022): 1–29. http://dx.doi.org/10.4018/ijisp.311467.
Pełny tekst źródłaCheng, Yepeng, Zuren Liu i Yasuhiko Morimoto. "Attention-Based SeriesNet: An Attention-Based Hybrid Neural Network Model for Conditional Time Series Forecasting". Information 11, nr 6 (5.06.2020): 305. http://dx.doi.org/10.3390/info11060305.
Pełny tekst źródłaPawar, Mahendra Eknath, Rais Allauddin Mulla, Sanjivani H. Kulkarni, Sajeeda Shikalgar, Harikrishna B. Jethva i Gunvant A. Patel. "A Novel Hybrid AI Federated ML/DL Models for Classification of Soil Components". International Journal on Recent and Innovation Trends in Computing and Communication 10, nr 1s (10.12.2022): 190–99. http://dx.doi.org/10.17762/ijritcc.v10i1s.5823.
Pełny tekst źródłaUTKU, Anıl. "Kentsel Trafik Tahminine Yönelik Derin Öğrenme Tabanlı Verimli Bir Hibrit Model". Bilişim Teknolojileri Dergisi 16, nr 2 (30.04.2023): 107–17. http://dx.doi.org/10.17671/gazibtd.1167140.
Pełny tekst źródłaLiang, Youzhi, Wen Liang i Jianguo Jia. "Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN". Advances in Artificial Intelligence and Machine Learning 03, nr 02 (2023): 1110–22. http://dx.doi.org/10.54364/aaiml.2023.1165.
Pełny tekst źródłaZhang, Langlang, Jun Xie, Xinxiu Liu, Wenbo Zhang i Pan Geng. "Research on water quality prediction based on PE-CNN-GRU hybrid model". E3S Web of Conferences 393 (2023): 02014. http://dx.doi.org/10.1051/e3sconf/202339302014.
Pełny tekst źródłaRozprawy doktorskie na temat "HYBRID CNN-RNN MODEL"
SONI, ANKIT. "DETECTING DEEPFAKES USING HYBRID CNN-RNN MODEL". Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19168.
Pełny tekst źródłaCzęści książek na temat "HYBRID CNN-RNN MODEL"
Ma, Zhiyuan, Wenge Rong, Yanmeng Wang, Libin Shi i Zhang Xiong. "A Hybrid RNN-CNN Encoder for Neural Conversation Model". W Knowledge Science, Engineering and Management, 159–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99247-1_14.
Pełny tekst źródłaGuo, Long, Dongxiang Zhang, Lei Wang, Han Wang i Bin Cui. "CRAN: A Hybrid CNN-RNN Attention-Based Model for Text Classification". W Conceptual Modeling, 571–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00847-5_42.
Pełny tekst źródłaBensalah, Nouhaila, Habib Ayad, Abdellah Adib i Abdelhamid Ibn El Farouk. "CRAN: An Hybrid CNN-RNN Attention-Based Model for Arabic Machine Translation". W Networking, Intelligent Systems and Security, 87–102. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3637-0_7.
Pełny tekst źródłaDavid, Hepzibah Elizabeth, K. Ramalakshmi, R. Venkatesan i G. Hemalatha. "Tomato Leaf Disease Detection Using Hybrid CNN-RNN Model". W Advances in Parallel Computing. IOS Press, 2021. http://dx.doi.org/10.3233/apc210108.
Pełny tekst źródłaStreszczenia konferencji na temat "HYBRID CNN-RNN MODEL"
Thomas, Merin, i Bhavana Gowda D M. "CNN-RNN Hybrid model based Hindi Character Recognition". W 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). IEEE, 2022. http://dx.doi.org/10.1109/iihc55949.2022.10060061.
Pełny tekst źródłaHsu, Shiou Tian, Changsung Moon, Paul Jones i Nagiza Samatova. "A Hybrid CNN-RNN Alignment Model for Phrase-Aware Sentence Classification". W Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/e17-2071.
Pełny tekst źródłaTu, Zihan, i Zhe Wu. "Predicting Beijing Air Quality Using Bayesian Optimized CNN-RNN Hybrid Model". W 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML). IEEE, 2022. http://dx.doi.org/10.1109/cacml55074.2022.00104.
Pełny tekst źródłaDong, Zihao, Ruixun Zhang i Xiuli Shao. "A CNN-RNN Hybrid Model with 2D Wavelet Transform Layer for Image Classification". W 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019. http://dx.doi.org/10.1109/ictai.2019.00147.
Pełny tekst źródłaSingh, Gurpreet, Pradeepta Kumar Sarangi, Lekha Rani, Kapil Sharma, Sachin Sinha, Ashok Kumar Sahoo i Bishnu Prasad Rath. "CNN-RNN based Hybrid Machine Learning Model to Predict the Currency Exchange Rate: USD to INR". W 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2022. http://dx.doi.org/10.1109/icacite53722.2022.9823844.
Pełny tekst źródłaZamani, Farhad, i Retno Wulansari. "Emotion Classification using 1D-CNN and RNN based On DEAP Dataset". W 10th International Conference on Natural Language Processing (NLP 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.112328.
Pełny tekst źródłaShen, Tao, Tianyi Zhou, Guodong Long, Jing Jiang, Sen Wang i Chengqi Zhang. "Reinforced Self-Attention Network: a Hybrid of Hard and Soft Attention for Sequence Modeling". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/604.
Pełny tekst źródłaAjao, Oluwaseun, Deepayan Bhowmik i Shahrzad Zargari. "Fake News Identification on Twitter with Hybrid CNN and RNN Models". W SMSociety '18: International Conference on Social Media and Society. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3217804.3217917.
Pełny tekst źródła