Artykuły w czasopismach na temat „Hybrid cathodes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hybrid cathodes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yamada, Mitsuru, Mika Fukunishi i Futoshi Matsumoto. "Improvement in Rate Capabilities of Hybrid Cathodes with through-Holed Layers of Cathode Material and Activated Carbon on Each Side of a Current Collector in Lithium-Ion Batteries". ECS Meeting Abstracts MA2024-02, nr 67 (22.11.2024): 4550. https://doi.org/10.1149/ma2024-02674550mtgabs.
Pełny tekst źródłaDolphijn, Guillaume, Fernand Gauthy, Alexandru Vlad i Jean-François Gohy. "High Power Cathodes from Poly(2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate)/Li(NixMnyCoz)O2 Hybrid Composites". Polymers 13, nr 6 (23.03.2021): 986. http://dx.doi.org/10.3390/polym13060986.
Pełny tekst źródłaEvans, John Parker, Dominic F. Gervasio i Barry M. Pryor. "A Hybrid Microbial–Enzymatic Fuel Cell Cathode Overcomes Enzyme Inactivation Limits in Biological Fuel Cells". Catalysts 11, nr 2 (11.02.2021): 242. http://dx.doi.org/10.3390/catal11020242.
Pełny tekst źródłaZhu, Sheng, i Yan Li. "Carbon-metal oxide nanocomposites as lithium-sulfur battery cathodes". Functional Materials Letters 11, nr 06 (grudzień 2018): 1830007. http://dx.doi.org/10.1142/s1793604718300074.
Pełny tekst źródłaDu, Leilei, Xu Hou, Debbie Berghus, Richard Schmuch, Martin Winter, Jie Li i Tobias Placke. "Failure Mechanism of LiNi0.6Co0.2Mn0.2O2 Cathodes in Aqueous/Non-Aqueous Hybrid Electrolytes". ECS Meeting Abstracts MA2022-01, nr 55 (7.07.2022): 2276. http://dx.doi.org/10.1149/ma2022-01552276mtgabs.
Pełny tekst źródłaAmine, Khalil. "(Invited) Advances in Lithium-Ion Battery for Enabling Mass Electrification of Vehicles". ECS Meeting Abstracts MA2024-02, nr 7 (22.11.2024): 896. https://doi.org/10.1149/ma2024-027896mtgabs.
Pełny tekst źródłaHu, Xue, Zi Lin, Li Liu, Jian Huai i Hua Deng. "Effects of the LiFePO4 content and the preparation method on the properties of (LiFePO4+AC)/Li4Ti5O12 hybrid batterycapacitors". Journal of the Serbian Chemical Society 75, nr 9 (2010): 1259–69. http://dx.doi.org/10.2298/jsc091228105h.
Pełny tekst źródłaProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell i John T. Vaughey. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells". MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Pełny tekst źródłaRamirez-Meyers, Katrina, i Elizabeth C. Dickey. "A TEM Study of Structural Degradation in LiFePO4 Batteries after Hybrid Vehicle Use". ECS Meeting Abstracts MA2024-01, nr 2 (9.08.2024): 369. http://dx.doi.org/10.1149/ma2024-012369mtgabs.
Pełny tekst źródłaOmenya, Fredrick, Xiaolin Li i David Reed. "(Invited) Insights into the Effects of Doping on Structural Phase Evolution of Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries". ECS Meeting Abstracts MA2023-01, nr 5 (28.08.2023): 939. http://dx.doi.org/10.1149/ma2023-015939mtgabs.
Pełny tekst źródłaLu, Renwei, Xiaolong Ren, Chong Wang, Changzhen Zhan, Ding Nan, Ruitao Lv, Wanci Shen, Feiyu Kang i Zheng-Hong Huang. "Na0.76V6O15/Activated Carbon Hybrid Cathode for High-Performance Lithium-Ion Capacitors". Materials 14, nr 1 (30.12.2020): 122. http://dx.doi.org/10.3390/ma14010122.
Pełny tekst źródłaXie, Bin, Junjie He, Yuchen Sun, Senlin Li i Jing Li. "Hybrid Anionic Electrolytes for the High Performance of Aqueous Zinc-Ion Hybrid Supercapacitors". Energies 16, nr 1 (26.12.2022): 248. http://dx.doi.org/10.3390/en16010248.
Pełny tekst źródłaFan, Xin, Mike Tebyetekerwa, Yilan Wu, Rohit Ranganathan Gaddam i Xiu Song Zhao. "Magnesium/Lithium Hybrid Batteries Based on SnS2-MoS2 with Reversible Conversion Reactions". Energy Material Advances 2022 (5.09.2022): 1–14. http://dx.doi.org/10.34133/2022/9846797.
Pełny tekst źródłaLiu, Zisheng, Ning Zhao, Xiaohui Zhao, Chenggong Wang, Tao Zhang, Sheng Xu i Xiangxin Guo. "Combination of Li-rich layered-oxide with O2 cathodes for high-energy Li-ion/Li-O2 hybrid batteries". Applied Physics Letters 120, nr 19 (9.05.2022): 193901. http://dx.doi.org/10.1063/5.0093183.
Pełny tekst źródłaRyu, HoonHee, Jin Wook Lee i Yang-Kook Sun. "Alleviation of Internal Microstrain in Ni-Rich Ncma Cathode through Microstructure Tailoring". ECS Meeting Abstracts MA2022-02, nr 3 (9.10.2022): 322. http://dx.doi.org/10.1149/ma2022-023322mtgabs.
Pełny tekst źródłaDing, Lifen, Qingchao Gao i Changzhou Yuan. "Hierarchical CaMn2O4/C Network Framework toward Aqueous Zn Ion Hybrid Capacitors as Competitive Cathodes". Batteries 9, nr 12 (12.12.2023): 586. http://dx.doi.org/10.3390/batteries9120586.
Pełny tekst źródłaLee, Wang-Geun. "Hybrid Electrolyte Strategies for High-Energy Sodium-Based Batteries". ECS Meeting Abstracts MA2024-02, nr 9 (22.11.2024): 1303. https://doi.org/10.1149/ma2024-0291303mtgabs.
Pełny tekst źródłaWolf, Sebastian, Niklas Schwenzer, Tim Tratz, Vinzenz Göken, Markus Börner, Daniel Neb, Heiner Heimes, Martin Winter i Achim Kampker. "Optimized LiFePO4-Based Cathode Production for Lithium-Ion Batteries through Laser- and Convection-Based Hybrid Drying Process". World Electric Vehicle Journal 14, nr 10 (6.10.2023): 281. http://dx.doi.org/10.3390/wevj14100281.
Pełny tekst źródłaChoudhury, Soumyadip, Marco Zeiger, Pau Massuti-Ballester, Simon Fleischmann, Petr Formanek, Lars Borchardt i Volker Presser. "Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries". Sustainable Energy & Fuels 1, nr 1 (2017): 84–94. http://dx.doi.org/10.1039/c6se00034g.
Pełny tekst źródłaChoudhury, Soumyadip, Pattarachai Srimuk, Kumar Raju, Aura Tolosa, Simon Fleischmann, Marco Zeiger, Kenneth I. Ozoemena, Lars Borchardt i Volker Presser. "Carbon onion/sulfur hybrid cathodes via inverse vulcanization for lithium–sulfur batteries". Sustainable Energy & Fuels 2, nr 1 (2018): 133–46. http://dx.doi.org/10.1039/c7se00452d.
Pełny tekst źródłaTakeuchi, Esther S., Kenneth J. Takeuchi i Amy C. Marschilok. "The Ongoing Importance of Lithium Primary Batteries: 50+ Years and Going Strong". ECS Meeting Abstracts MA2022-02, nr 2 (9.10.2022): 102. http://dx.doi.org/10.1149/ma2022-022102mtgabs.
Pełny tekst źródłaPan, Bonian, Jay F. Whitacre, Xinsheng Wu i Young-Geun Lee. "Micrometer Scale X-Ray CT Assisted Cathode Pore Space Designs for High Energy Fast Discharge Rate Lithium-Ion Battery". ECS Meeting Abstracts MA2024-02, nr 6 (22.11.2024): 742. https://doi.org/10.1149/ma2024-026742mtgabs.
Pełny tekst źródłaZhang, Anbang, Qi Zhou, Yuanyuan Shi, Chao Yang, Yijun Shi, Yi Yang, Liyang Zhu, Wanjun Chen, Zhaoji Li i Bo Zhang. "AlGaN/GaN Lateral CRDs With Hybrid Trench Cathodes". IEEE Transactions on Electron Devices 65, nr 6 (czerwiec 2018): 2660–65. http://dx.doi.org/10.1109/ted.2018.2822834.
Pełny tekst źródłaChen, Dong, Zhongxue Chen i Fei Xu. "Rechargeable Mg–Na and Mg–K hybrid batteries based on a low-defect Co3[Co(CN)6]2 nanocube cathode". Physical Chemistry Chemical Physics 23, nr 32 (2021): 17530–35. http://dx.doi.org/10.1039/d1cp02789a.
Pełny tekst źródłaPan, Baofei, Zhenxing Feng, Niya Sa, Sang-Don Han, Qing Ma, Paul Fenter, John T. Vaughey, Zhengcheng Zhang i Chen Liao. "Advanced hybrid battery with a magnesium metal anode and a spinel LiMn2O4 cathode". Chemical Communications 52, nr 64 (2016): 9961–64. http://dx.doi.org/10.1039/c6cc04133g.
Pełny tekst źródłaFeng, Yan, Yuliang Zhang, Xiangyun Song, Yuzhen Wei i Vincent S. Battaglia. "Facile hydrothermal fabrication of ZnO–graphene hybrid anode materials with excellent lithium storage properties". Sustainable Energy & Fuels 1, nr 4 (2017): 767–79. http://dx.doi.org/10.1039/c7se00102a.
Pełny tekst źródłaQiu, Wenda, Quanhua Zhou, Hongbing Xiao, Chun Zhou, Wenting He, Yu Li i Xihong Lu. "Phosphate ion and oxygen defect-modulated nickel cobaltite nanowires: a bifunctional cathode for flexible hybrid supercapacitors and microbial fuel cells". Journal of Materials Chemistry A 8, nr 17 (2020): 8722–30. http://dx.doi.org/10.1039/d0ta01423k.
Pełny tekst źródłaGuo, Zhang, Zhien Liu, Wan Chen, Xianzhong Sun, Xiong Zhang, Kai Wang i Yanwei Ma. "Battery-Type Lithium-Ion Hybrid Capacitors: Current Status and Future Perspectives". Batteries 9, nr 2 (21.01.2023): 74. http://dx.doi.org/10.3390/batteries9020074.
Pełny tekst źródłaMimura, Hidenori, Hidetaka Shimawaki i Kuniyoshi Yokoo. "Emission characteristics of semiconductor cathodes". Electronics and Communications in Japan (Part II: Electronics) 84, nr 5 (18.04.2001): 1–9. http://dx.doi.org/10.1002/ecjb.1023.
Pełny tekst źródłaXiang, Ao, Deyou Shi, Peng Chen, Zhongjun Li, Quan Tu, Dahui Liu, Xiangguang Zhang i in. "Na4Fe3(PO4)2(P2O7)@C/Ti3C2Tx Hybrid Cathode Materials with Enhanced Performances for Sodium-Ion Batteries". Batteries 10, nr 4 (3.04.2024): 121. http://dx.doi.org/10.3390/batteries10040121.
Pełny tekst źródłaLi, Qiufeng, Bo Lin, Sen Zhang i Chao Deng. "Towards high potential and ultra long-life cathodes for sodium ion batteries: freestanding 3D hybrid foams of Na7V4(P2O7)4(PO4) and Na7V3(P2O7)4@biomass-derived porous carbon". Journal of Materials Chemistry A 4, nr 15 (2016): 5719–29. http://dx.doi.org/10.1039/c6ta01465h.
Pełny tekst źródłaEleri, Obinna Egwu, Fengliu Lou i Zhixin Yu. "Lithium-Ion Capacitors: A Review of Strategies toward Enhancing the Performance of the Activated Carbon Cathode". Batteries 9, nr 11 (27.10.2023): 533. http://dx.doi.org/10.3390/batteries9110533.
Pełny tekst źródłaHao, Junnan, Fuhua Yang, Shilin Zhang, Hanna He, Guanglin Xia, Yajie Liu, Christophe Didier i in. "Designing a hybrid electrode toward high energy density with a staged Li+ and PF6− deintercalation/intercalation mechanism". Proceedings of the National Academy of Sciences 117, nr 6 (29.01.2020): 2815–23. http://dx.doi.org/10.1073/pnas.1918442117.
Pełny tekst źródłaChoudhury, Soumyadip, Pattarachai Srimuk, Kumar Raju, Aura Tolosa, Simon Fleischmann, Marco Zeiger, Kenneth I. Ozoemena, Lars Borchardt i Volker Presser. "Correction: Carbon onion/sulfur hybrid cathodes via inverse vulcanization for lithium–sulfur batteries". Sustainable Energy & Fuels 6, nr 7 (2022): 1812. http://dx.doi.org/10.1039/d2se90017c.
Pełny tekst źródłaSonia, T. S., P. Anjali, S. Roshny, V. Lakshmi, R. Ranjusha, K. R. V. Subramanian, Shantikumar V. Nair i Avinash Balakrishnan. "Nano/micro-hybrid NiS cathodes for lithium ion batteries". Ceramics International 40, nr 6 (lipiec 2014): 8351–56. http://dx.doi.org/10.1016/j.ceramint.2014.01.041.
Pełny tekst źródłaKong, Shuying, Xu Zhang, Binbin Jin, Xiaogang Guo, Guoqing Zhang, Huisheng Huang, Xinzhu Xiang i Kui Cheng. "FeNb2O6/reduced graphene oxide composites with intercalation pseudo-capacitance enabling ultrahigh energy density for lithium-ion capacitors". RSC Advances 11, nr 51 (2021): 32248–57. http://dx.doi.org/10.1039/d1ra03198h.
Pełny tekst źródłaJuran, Taylor R., i Manuel Smeu. "Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo6S8 cathode". Physical Chemistry Chemical Physics 19, nr 31 (2017): 20684–90. http://dx.doi.org/10.1039/c7cp03378h.
Pełny tekst źródłaLiu, Jingze, Jiamei Lai, Xingyuan Huang i Hesheng Liu. "Nanocellulose-Based Hybrid Hydrogels as Flexible Cathodes of Aqueous Zn-Ion Batteries". Nano 14, nr 04 (kwiecień 2019): 1950047. http://dx.doi.org/10.1142/s1793292019500474.
Pełny tekst źródłaRamirez-Meyers, Katrina, i Jay Whitacre. "Direct-Recycling of LiFePO4 Cathodes from a Hybrid-Electric Bus Battery Via Chemical Relithiation". ECS Meeting Abstracts MA2022-02, nr 6 (9.10.2022): 632. http://dx.doi.org/10.1149/ma2022-026632mtgabs.
Pełny tekst źródłaYu, Tiantian, Bo Lin, Qiufeng Li, Xiaoguang Wang, Weili Qu, Sen Zhang i Chao Deng. "First exploration of freestanding and flexible Na2+2xFe2−x(SO4)3@porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries". Physical Chemistry Chemical Physics 18, nr 38 (2016): 26933–41. http://dx.doi.org/10.1039/c6cp04958c.
Pełny tekst źródłaZhang, Yongguang, Zhumabay Bakenov, Taizhe Tan i Jin Huang. "Three-Dimensional Hierarchical Porous Structure of PPy/Porous-Graphene to Encapsulate Polysulfides for Lithium/Sulfur Batteries". Nanomaterials 8, nr 8 (9.08.2018): 606. http://dx.doi.org/10.3390/nano8080606.
Pełny tekst źródłaDolphijn, G., S. Isikli, F. Gauthy, A. Vlad i J. F. Gohy. "Hybrid LiMn2O4–radical polymer cathodes for pulse power delivery applications". Electrochimica Acta 255 (listopad 2017): 442–48. http://dx.doi.org/10.1016/j.electacta.2017.10.021.
Pełny tekst źródłaTian, Chunxi, Kun Qin, Tingting Xu i Liumin Suo. "Hybrid Li-rich cathodes for anode-free lithium metal batteries". Next Nanotechnology 7 (2025): 100114. http://dx.doi.org/10.1016/j.nxnano.2024.100114.
Pełny tekst źródłaZou, MeiLing, JiaDong Chen, LongFei Xiao, Han Zhu, TingTing Yang, Ming Zhang i MingLiang Du. "WSe2 and W(SexS1−x)2 nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction". Journal of Materials Chemistry A 3, nr 35 (2015): 18090–97. http://dx.doi.org/10.1039/c5ta04426j.
Pełny tekst źródłaGao, Xiaosi, Changyang Zheng, Yiqi Shao, Shuo Jin, Jin Suntivich i Yong Lak Joo. "Lithium Iron Phosphate Reconstruction Facilitates Kinetics in High-Areal-Capacity Sulfur Composite Cathodes". ECS Meeting Abstracts MA2022-01, nr 1 (7.07.2022): 35. http://dx.doi.org/10.1149/ma2022-01135mtgabs.
Pełny tekst źródłaZahiri, Beniamin, Chadd Kiggins, Dijo Damien, Michael Caple, Arghya Patra, Carlos Juarez Yescaz, John B. Cook i Paul V. Braun. "Hybrid Halide Solid Electrolytes and Bottom-up Cell Assembly Enable High Voltage Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, nr 2 (7.07.2022): 327. http://dx.doi.org/10.1149/ma2022-012327mtgabs.
Pełny tekst źródłaCastillo, Ivan, Balram Tripathi, Danilo Barrionuevo, Gerardo Morell i Ram S. Katiyar. "Long Chain Polysulfides Control via Ferroelectric (Ba0.9Sr0.1TiO3) Nanoparticles Doped Sulfur Cathode for High-Capacity Li-S Batteries". ECS Meeting Abstracts MA2024-02, nr 2 (22.11.2024): 268. https://doi.org/10.1149/ma2024-022268mtgabs.
Pełny tekst źródłaZhu, Caixia, Yakun Tang, Lang Liu, Xiaohui Li, Yang Gao, Shasha Gao i Yanna NuLi. "MLi2Ti6O14 (M = Sr, Ba, and Pb): new cathode materials for magnesium–lithium hybrid batteries". Dalton Transactions 48, nr 47 (2019): 17566–71. http://dx.doi.org/10.1039/c9dt03799c.
Pełny tekst źródłaErnould, Bruno, Olivier Bertrand, Andrea Minoia, Roberto Lazzaroni, Alexandru Vlad i Jean-François Gohy. "Electroactive polymer/carbon nanotube hybrid materials for energy storage synthesized via a “grafting to” approach". RSC Advances 7, nr 28 (2017): 17301–10. http://dx.doi.org/10.1039/c7ra02119d.
Pełny tekst źródłaGerasimenko, Alexander Yu, Artem V. Kuksin, Yury P. Shaman, Evgeny P. Kitsyuk, Yulia O. Fedorova, Denis T. Murashko, Artemiy A. Shamanaev i in. "Hybrid Carbon Nanotubes–Graphene Nanostructures: Modeling, Formation, Characterization". Nanomaterials 12, nr 16 (16.08.2022): 2812. http://dx.doi.org/10.3390/nano12162812.
Pełny tekst źródła