Gotowa bibliografia na temat „Hybrid cathodes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hybrid cathodes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hybrid cathodes"
Yamada, Mitsuru, Mika Fukunishi i Futoshi Matsumoto. "Improvement in Rate Capabilities of Hybrid Cathodes with through-Holed Layers of Cathode Material and Activated Carbon on Each Side of a Current Collector in Lithium-Ion Batteries". ECS Meeting Abstracts MA2024-02, nr 67 (22.11.2024): 4550. https://doi.org/10.1149/ma2024-02674550mtgabs.
Pełny tekst źródłaDolphijn, Guillaume, Fernand Gauthy, Alexandru Vlad i Jean-François Gohy. "High Power Cathodes from Poly(2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate)/Li(NixMnyCoz)O2 Hybrid Composites". Polymers 13, nr 6 (23.03.2021): 986. http://dx.doi.org/10.3390/polym13060986.
Pełny tekst źródłaEvans, John Parker, Dominic F. Gervasio i Barry M. Pryor. "A Hybrid Microbial–Enzymatic Fuel Cell Cathode Overcomes Enzyme Inactivation Limits in Biological Fuel Cells". Catalysts 11, nr 2 (11.02.2021): 242. http://dx.doi.org/10.3390/catal11020242.
Pełny tekst źródłaZhu, Sheng, i Yan Li. "Carbon-metal oxide nanocomposites as lithium-sulfur battery cathodes". Functional Materials Letters 11, nr 06 (grudzień 2018): 1830007. http://dx.doi.org/10.1142/s1793604718300074.
Pełny tekst źródłaDu, Leilei, Xu Hou, Debbie Berghus, Richard Schmuch, Martin Winter, Jie Li i Tobias Placke. "Failure Mechanism of LiNi0.6Co0.2Mn0.2O2 Cathodes in Aqueous/Non-Aqueous Hybrid Electrolytes". ECS Meeting Abstracts MA2022-01, nr 55 (7.07.2022): 2276. http://dx.doi.org/10.1149/ma2022-01552276mtgabs.
Pełny tekst źródłaAmine, Khalil. "(Invited) Advances in Lithium-Ion Battery for Enabling Mass Electrification of Vehicles". ECS Meeting Abstracts MA2024-02, nr 7 (22.11.2024): 896. https://doi.org/10.1149/ma2024-027896mtgabs.
Pełny tekst źródłaHu, Xue, Zi Lin, Li Liu, Jian Huai i Hua Deng. "Effects of the LiFePO4 content and the preparation method on the properties of (LiFePO4+AC)/Li4Ti5O12 hybrid batterycapacitors". Journal of the Serbian Chemical Society 75, nr 9 (2010): 1259–69. http://dx.doi.org/10.2298/jsc091228105h.
Pełny tekst źródłaProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell i John T. Vaughey. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells". MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Pełny tekst źródłaRamirez-Meyers, Katrina, i Elizabeth C. Dickey. "A TEM Study of Structural Degradation in LiFePO4 Batteries after Hybrid Vehicle Use". ECS Meeting Abstracts MA2024-01, nr 2 (9.08.2024): 369. http://dx.doi.org/10.1149/ma2024-012369mtgabs.
Pełny tekst źródłaOmenya, Fredrick, Xiaolin Li i David Reed. "(Invited) Insights into the Effects of Doping on Structural Phase Evolution of Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries". ECS Meeting Abstracts MA2023-01, nr 5 (28.08.2023): 939. http://dx.doi.org/10.1149/ma2023-015939mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Hybrid cathodes"
Adjez, Yanis. "Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Pełny tekst źródłaNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions
Moraw, Franz Christian. "Hybrid PEM fuel cell : redox cathode approach". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7720.
Pełny tekst źródłaGustavsson, Lars-Erik. "Hollow Cathode Deposition of Thin Films". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6925.
Pełny tekst źródłaOsiecki, Tomasz, Colin Gerstenberger, Holger Seidlitz, Alexander Hackert i Lothar Kroll. "Behavior of Cathodic dip Paint Coated Fiber Reinforced Polymer/Metal Hybrids". Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175536.
Pełny tekst źródłaEzzedine, Mariam. "Fabrication of hierarchical hybrid nanostructured electrodes based on nanoparticles decorated carbon nanotubes for Li-Ion batteries". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX105/document.
Pełny tekst źródłaThis thesis is devoted to the bottom-up fabrication of hierarchical hybrid nanostructured materials based on active vertically aligned carbon nanotubes (VACNTs) decorated with nanoparticles (NPs). Owing to their unique structure and electronic properties, VACNTs act as a support matrix and an excellent current collector, and thus enhance the electronic and ionic transport pathways. The nanostructuration and the confinement of sulfur (S) in a conductive host material improve its conductivity, while the nanostructuration of silicon (Si) accommodates better the volume change during the electrochemical reactions. In the first part of the thesis, we have synthesized VACNTs by a hot filament chemical vapor deposition (HF-CVD) method directly over aluminum and copper commercial foils without any pretreatment of the substrates. In the second part, we have decorated the sidewalls and the surface of the VACNT carpets with various LIB's active electrode materials, including S and Si NPs. We have also deposited and characterized nickel (Ni) NPs on CNTs as alternative materials for the cathode electrode. No conductive additives or any polymer binder have been added to the electrode composition. The CNTs decoration has been done systematically through two different methods: wet method by electrodeposition and dry method by physical vapor deposition (PVD). The obtained hybrid structures have been electrochemically tested separately in a coin cell against a lithium counter-electrode. Regarding the S evaporationon VACNTs, and the S@VACNTs structure, these topics are investigated for the first time to the best of our knowledge.Preliminary tests on the obtained nanostructured cathodes (S@VACNTs coated with alumina or polyaniline) have shown that it is possible to attain a specific capacity close to S theoretical storage capacity. The surface capacity of S@VACNTs, with 0.76 mg cm-2 of S, at C/20 rate reaches 1.15 mAh cm-2 at the first cycle. For the nanostructured anodes Si@VACNTs, with 4.11 mg cm-2 of Si showed an excellent surface capacity of 12.6 mAh cm-2, the highest value for nanostructured silicon anodes obtained so far. In the last part of the thesis, the fabricated nanostructured electrodes have been assembled in a full battery (Li2S/Si) and its electrochemical performances experimentally tested. The high and well-balanced surface capacities obtained for S and Si nanostructured electrodes pave the way for realization of high energy density, all-nanostructured LIBs and demonstrate the large potentialities of the proposed hierarchical hybrid nanostructures' concept
Holmes, Steven. "An investigation into the practical and theoretical aspects of hybrid cathodic protection". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/12280.
Pełny tekst źródłaMyalo, Zolani. "Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathode Systems for Lithium-Ion Batteries". University of the Western Cape, 2017. http://hdl.handle.net/11394/6036.
Pełny tekst źródłaThis research was based on the development and characterization of graphenised lithium iron phosphate-lithium manganese silicate (LiFePO4-Li2MnSiO4) hybrid cathode materials for use in Li-ion batteries. Although previous studies have mainly focused on the use of a single cathode material, recent works have shown that a combination of two or more cathode materials provides better performances compared to a single cathode material. The LiFePO4- Li2MnSiO4 hybrid cathode material is composed of LiFePO4 and Li2MnSiO4. The Li2MnSiO4 contributes its high working voltage ranging from 4.1 to 4.4 V and a specific capacity of 330 mA h g-1, which is twice that of the LiFePO4 which, in turn, offers its long cycle life, high rate capacity as well as good electrochemical and thermal stability. The two cathode materials complement each other's properties however they suffer from low electronic conductivities which were suppressed by coating the hybrid material with graphene nanosheets. The synthetic route entailed a separate preparation of the individual pristine cathode materials, using a sol-gel protocol. Then, the graphenised LiFePO4-Li2MnSiO4 and LiFePO4-Li2MnSiO4 hybrid cathodes were obtained in two ways: the hand milling (HM) method where the pristine cathodes were separately prepared and then mixed with graphene using a pestle and mortar, and the in situ sol-gel (SG) approach where the Li2MnSiO4 and graphene were added into the LiFePO4 sol, stirred and calcined together.
2021-04-30
Söderström, Daniel. "Modelling and Applications of the Hollow Cathode Plasma". Doctoral thesis, Uppsala universitet, Elektricitetslära, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8747.
Pełny tekst źródłaVickers, Simon. "Particle in cell and hybrid simulations of the Z double-post-hole convolute cathode plasma evolution and dynamics". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17874.
Pełny tekst źródłaEl, jouad Zouhair. "Réalisation et caractérisation des cellules photovoltaïques organiques". Thesis, Angers, 2016. http://www.theses.fr/2016ANGE0022/document.
Pełny tekst źródłaThis thesis concerns elaboration and characterization of classical and inverse organic photovoltaic cells, specifically improving the anodic and cathodic buffer layers. We started by improving the cathode buffer layers with different electron donors: copper phthalocyanine CuPc, subphtalocyanine SubPc and thiophene derivatives (BSTV and BOTV). In the first case of electron donor (CuPc), we highlighted the effect of the thin layer of cesium compound, used as a cathodic buffer layer in inverse cells, on the collection of electrons after heat treatment.We have also shown that the hybrid cathodic buffer layer, Alq3 (9 nm) / Ca (3nm) improves the cell performance whatever the electron donor without annealing. In the case of thiophene derivatives, we have shown how the morphology of the organic layers surface can influence the performance of organic photovoltaic cells. In the case of SubPc used in inverse cells, we studied the effect of the deposition rate of the layer on the morphology of SubPc surface.Regarding the improvement of the anodic buffer layers, we investigated those based on the SubPc and pentathiophene (5T) in classical cells. After optimization of the electron donors thickness, we have shown that the bilayer MoO3 (3 nm) / CuI (1.5 nm) used as an anodic buffer layer, improves cell performances, whatever the electron donor. In the case of SubPc, we obtained a efficiency approaching 5%
Części książek na temat "Hybrid cathodes"
Wen, Zhenhai, Suqin Ci i Junhong Chen. "Nanocarbon-Based Hybrids as Cathode Electrocatalysts for Microbial Fuel Cells". W Nanocarbons for Advanced Energy Conversion, 215–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527680016.ch8.
Pełny tekst źródłaMurugesan, Chinnasamy, Baskar Senthilkumar, Kriti Choudhary i Prabeer Barpanda. "Cobalt–Phosphate-Based Insertion Material as a Multifunctional Cathode for Rechargeable Hybrid Sodium–Air Batteries". W Recent Research Trends in Energy Storage Devices, 35–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6394-2_5.
Pełny tekst źródłaGodefroidt, Emile, Bjorn Van Belleghem i Tim Soetens. "Effectiveness and Throwing Power of Hybrid Anode Cathodic Protection in Chloride Contaminated Reinforced Concrete". W RILEM Bookseries, 175–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75507-1_18.
Pełny tekst źródłaGoyal, Megha, i Tapas Kumar Mandal. "Influence of Different Precipitating Agents on the Synthesis of NiMn-LDHs Based Cathode Materials for High Performance Hybrid Devices". W Springer Proceedings in Physics, 187–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1971-0_28.
Pełny tekst źródłaParbey, Joseph, Fehrs Adu-Gyamfi i Michael Gyan. "Progress in Cathode Materials for Methanol Fuel Cells". W Methanol Fuel - New Developments, Perspectives and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1003869.
Pełny tekst źródłaRajpurohit, Praveen, i Manaswini Behera. "Light-assisted microbial electrochemical technologies for bioelectricity generation and product recovery". W Resource Recovery from Industrial Wastewater through Microbial Electrochemical Technologies, 61–80. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789063813_0061.
Pełny tekst źródłaM. Orona-Hinojos, Jesus. "Innovative Double Cathode Configuration for Hybrid ECM + EDM Blue Arc Drilling". W Drilling Technology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97547.
Pełny tekst źródłaArif, Khizra, Abdul Shakoor, Muhammad Awais, Marvi Dashi, Behram Khan Ajat Khel, Bentham Science Publisher Sami Ur Rehman, Khansa Masood, Farah Hussain, Waheed Alam i Muhammad Atif. "Graphene-based Materials for Electrochemical Energy Storage Devices-EESDs; Opportunities and Future Perspective". W The 2-Dimensional World of Graphene, 160–76. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815238938124010011.
Pełny tekst źródłaLitovko, Iryna, Alexey Goncharov, Andrew Dobrovolskyi i Iryna Naiko. "The Emerging Field Trends Erosion-Free Electric Hall Thrusters Systems". W Plasma Science and Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99096.
Pełny tekst źródłaMohammadi, Arash. "Hybrid nanomaterials of hollow carbon spheres as cathode materials". W Nanostructured Lithium-ion Battery Materials, 87–109. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-443-13338-1.00024-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Hybrid cathodes"
Major, K., G. Brisard i J. Veilleux. "Lithium Iron Phosphate Coatings Deposited by Means of Inductively-Coupled Thermal Plasma". W ITSC2015, redaktorzy A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen i C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0566.
Pełny tekst źródłaTucker, David, Larry Lawson, Thomas P. Smith i Comas Haynes. "Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97107.
Pełny tekst źródłaAvdeev, Ilya V., i Mehdi Gilaki. "Explicit Dynamic Simulation of Impact in Cylindrical Lithium-Ion Batteries". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88165.
Pełny tekst źródłaLambruschini, Fabio, Mario L. Ferrari, Alberto Traverso i Luca Larosa. "Emergency Shutdown Management in Fuel Cell Gas Turbine Hybrid Systems". W ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25432.
Pełny tekst źródłaHao, Xia, Shenghao Wang, Takeaki Sakurai i Katsuhiro Akimoto. "The effect of cathode buffer in small molecule organic solar cells". W 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.047.
Pełny tekst źródłaOpitz, Andreas, Dominique Lungwitz, Raphael Schlesinger, Sujitkumar Bontapalle, Susy Varughese, Keli Fabiana Seidel, Thomas Krüger, Jan Behrends, Seth R. Marder i Norbert Koch. "Polyethylenimine cathode interlayer: influence of solvent on functionality and single-step formation from polymer blend solution". W Organic, Hybrid, and Perovskite Photovoltaics XXII, redaktorzy Zakya H. Kafafi, Paul A. Lane, Gang Li, Ana Flávia Nogueira i Ellen Moons. SPIE, 2021. http://dx.doi.org/10.1117/12.2593881.
Pełny tekst źródłaBanta, Larry E., Bernardo Restrepo, Alex J. Tsai i David Tucker. "Cathode Temperature Management During Hybrid System Startup". W ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33121.
Pełny tekst źródłaBooth, Ronald E., Yuan Xiong, Yuxuan Liu, Yong Zhu, Harald W. Ade i Brendan T. O'Connor. "ITO-free fully solution-processed flexible semi-transparent organic photovoltaics utilizing metal nanowire for anode and cathode". W Organic, Hybrid, and Perovskite Photovoltaics XXI, redaktorzy Kwanghee Lee, Zakya H. Kafafi, Paul A. Lane, Harald W. Ade i Yueh-Lin (Lynn) Loo. SPIE, 2020. http://dx.doi.org/10.1117/12.2570470.
Pełny tekst źródłaChen, Jinwei, Kuanying Gao, Maozong Liang i Huisheng Zhang. "Performance Evaluation of a SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations". W ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63745.
Pełny tekst źródłaVanOsdol, John G., Randall Gemmen i Edward Parsons. "Using Staged Compression to Increase the System Efficiency of a Coal Based Gas Turbine Fuel Cell Hybrid Power Generation System With Carbon Capture". W ASME 2008 Power Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/power2008-60111.
Pełny tekst źródłaRaporty organizacyjne na temat "Hybrid cathodes"
Lawson i Thompson. L52100 Hot-Spot Protection for Impressed Current Systems. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2003. http://dx.doi.org/10.55274/r0010153.
Pełny tekst źródła