Gotowa bibliografia na temat „Hybrid biocomposites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hybrid biocomposites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hybrid biocomposites"
Guna, Vijaykumar, Manikandan Ilangovan, M. G. Ananthaprasad i Narendra Reddy. "Hybrid biocomposites". Polymer Composites 39 (6.11.2017): E30—E54. http://dx.doi.org/10.1002/pc.24641.
Pełny tekst źródłaSingh, Tej, Punyasloka Pattnaik, Amit Aherwar, Lalit Ranakoti, Gábor Dogossy i László Lendvai. "Optimal Design of Wood/Rice Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC–MABAC-Based Decision-Making Algorithm". Polymers 14, nr 13 (27.06.2022): 2603. http://dx.doi.org/10.3390/polym14132603.
Pełny tekst źródłaAlbaqami, Munirah D., Yagya Dutta Dwivedi, N. Krishnamoorthy, M. Logesh Kumar, L. H. Manjunatha, Ch Mallika Chowdary, Saikh Mohammad Wabaidur, A. Rajendra Prasad, Rupesh V. Chikhale i S. Praveen Kumar. "Investigation on Mechanical and Thermal Properties of a Kenaf/Jute Fiber-Reinforced Polyester Hybrid Biocomposite". Advances in Polymer Technology 2022 (13.07.2022): 1–6. http://dx.doi.org/10.1155/2022/7408135.
Pełny tekst źródłaBahrami, Mohsen, Juana Abenojar i Miguel Ángel Martínez. "Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy". Materials 13, nr 22 (15.11.2020): 5145. http://dx.doi.org/10.3390/ma13225145.
Pełny tekst źródłaZhu, Qianqian, Jingjing Wang, Jianzhong Sun i Qianqian Wang. "Preparation and characterization of regenerated cellulose biocomposite film filled with calcium carbonate by in situ precipitation". BioResources 15, nr 4 (31.08.2020): 7893–905. http://dx.doi.org/10.15376/biores.15.4.7893-7905.
Pełny tekst źródłaHasan, K. M. Faridul, Péter György Horváth, Miklós Bak, Duong Hung Anh Le, Zsuzsanna Mária Mucsi i Tibor Alpár. "Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites". Cellulose 28, nr 12 (23.06.2021): 7859–75. http://dx.doi.org/10.1007/s10570-021-04029-9.
Pełny tekst źródłaMohd, Haziq Amri, Mohamad Bashree Abu Bakar, Mohamad Najmi Masri, Muhammad Azwadi Sulaiman, Mohd Hazim Mohamad Amini, Sarizam Mamat i Mazlan Mohamed. "Mechanical and Thermal Properties of Hybrid Non-Woven Kenaf Fibre Mat-Graphene Nanoplatelets reinforced Polypropylene Composites". Materials Science Forum 1010 (wrzesień 2020): 124–29. http://dx.doi.org/10.4028/www.scientific.net/msf.1010.124.
Pełny tekst źródłaRamakrishnan, KarthikRam, Mikko Hokka, Essi Sarlin, Mikko Kanerva, Reijo Kouhia i Veli-Tapani Kuokkala. "Experimental investigation of the impact response of novel steelbiocomposite hybrid materials". EPJ Web of Conferences 183 (2018): 02040. http://dx.doi.org/10.1051/epjconf/201818302040.
Pełny tekst źródłaAmini, Ezatollah (Nima), i Mehdi Tajvidi. "Mechanical and thermal behavior of cellulose nanocrystals-incorporated Acrodur® sustainable hybrid composites for automotive applications". Journal of Composite Materials 54, nr 22 (22.03.2020): 3159–69. http://dx.doi.org/10.1177/0021998320912474.
Pełny tekst źródłaShamsuyeva, Madina, Jana Winkelmann i Hans-Josef Endres. "Manufacture of Hybrid Natural/Synthetic Fiber Woven Textiles for Use in Technical Biocomposites with Maximum Biobased Content". Journal of Composites Science 3, nr 2 (1.05.2019): 43. http://dx.doi.org/10.3390/jcs3020043.
Pełny tekst źródłaRozprawy doktorskie na temat "Hybrid biocomposites"
Henschel, Katharina Andrea [Verfasser], Manfred [Akademischer Betreuer] Hajek, Manfred [Gutachter] Hajek i Horst [Gutachter] Baier. "Biocomposites in Aviation Structures on the Example of Flax and its Hybrids / Katharina Andrea Henschel ; Gutachter: Manfred Hajek, Horst Baier ; Betreuer: Manfred Hajek". München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1213026008/34.
Pełny tekst źródłaMorelli, Carolina Lipparelli. "Développement et étude des propriétés des films et des pièces injectées de nano-biocomposites de nanowhiskers de cellulose et de polymères biodégradables". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI018/document.
Pełny tekst źródłaThis study aimed at evaluating the potential of application of cellulose nanocrystals as reinforcing elements of biodegradable polymeric matrices, in the films and injection molded pieces applications. Two polymeric matrices with different properties were used, namely: poly(butylene adipate-co-terephthalate), PBAT, and poly(lactic acid), PLA. For the extraction of cellulose nanocrystals (NCC), two sources were selected: microcrystalline cellulose (CMC) and balsa wood . Due to the high polarity of cellulose nanocrystals, different approaches of surface chemical modifications of these particles were tested, in order to ensure their good dispersion when added to polymeric matrices of lower polarity. They were: a) chemical modification with two types of isocyanates, an aliphatic one (octadecyl isocyanate) and an aromatic one (phenylbutyl isocyanate); b) grafting of poly (butylene glutarate) using the in situ polymerization technique; c) silanization treatment; and d) grafting of poly(acrylic acid) through click chemistry technique. Modified and unmodified NCCs were processed with PBAT and PLA by casting or melt extrusion processing techniques. In general, the chemical modification of NCC surface increased their thermal resistance, decreased their polarity and improved their dispersion into PLA and PBAT matrices. Some of these treatments, as well as the processing conditions enabled an increase in the overall mechanical properties of the polymers. Thus, the characterization of the nanocomposites showed that NCC addition increased the elastic modulus of the matrix and retained its higher stiffness even under relatively high temperatures. Higher NCC contents led to larger increases in the stiffness of the ensuing composites. The water vapor permeability of PBAT was also reduced with the introduction of NCC. This work points out several potential good perspectives for the use of celulose nanocrystals as reinforcing elements of polymeric matrices. It showed also that it is possible to obtain significant improvements in the polymer properties using the same processing techniques as those used at industrial scale, such as melt extrusion and injection molding
O presente estudo de doutorado teve como objetivo avaliar o potencial deaplicação de nanocristais de celulose como reforço em matrizes poliméricasbiodegradáveis, em aplicações de filmes ou em peças moldadas por injeção.Duas matrizes poliméricas de diferentes propriedades foram utilizadas paraestudo nessas aplicações, sendo elas: poli(butileno adipato-co-tereftalato),PBAT, e poli(ácido láctico), PLA. Foram também selecionadas duas fontes paraextração dos nanocristais de celulose (NCC): a celulose microcristalina (CMC)e a madeira balsa.Devido ao caráter altamente polar dos nanocristais de celulose diferentesrotas de modificações químicas superficiais dessas partículas foram testadas,visando garantir a boa dispersão dos mesmos quando adicionados às matrizespoliméricas de menor polaridade. Foram elas: a) modificação química com doistipos de isocianatos, sendo um de cadeia alifática (octadecil isocianato) e outrode cadeia aromática (fenilbutil isocianato); b) enxertia do poli(butileno glutarato)através da técnica de polimerização in situ; c) tratamento de silanização com -metacriloxi-propil-trimetoxi-silano; d) enxertia de poli(ácido acrílico) através datécnica de click chemistry.NCC modificados e não modificados foram processados com PBAT ouPLA através de mistura com o polímero em solução (casting) ou no estadofundido (extrusão ou homogeneizador de alta rotação do tipo Drais).De modo geral, modificações químicas superficiais dos NCC aumentarama estabilidade térmica dos mesmos, diminuíram sua polaridade e melhoraram adispersão dos NCC nas matrizes de PBAT ou PLA. Isso fez com queincrementos ainda maiores nas propriedades desses polímeros pudessem serxxivalcançados, dependendo do tipo de modificação e do processo de misturautilizados.A caracterização dos nanocompósitos obtidos mostrou que a adição deNCC elevou o módulo elástico das matrizes e conservou sua maior rigidezmesmo em temperaturas relativamente elevadas, sendo que maiores teores deNCC levaram a maiores aumentos na rigidez. A permeabilidade a vapor deágua do PBAT também foi reduzida com a introdução dos NCC e não foialterada no caso do PLA.Os resultados desse trabalho apontaram boas perspectivas no uso dosnanocristais de celulose como reforços de matrizes poliméricas. Tambémmostraram que é possível obter melhorias nas propriedades de polímerosmesmo através da utilização de processos de maior reprodutibilidade emescala industrial, como extrusão e injeção
Golie, Wondalem Misganaw. "Removal of nitrate from water by adsorption on organic-inorganic hybrid biocomposites". Thesis, 2017. http://localhost:8080/xmlui/handle/12345678/7410.
Pełny tekst źródłaSardashti, Amirpouyan. "Wheat Straw-Clay-Polypropylene Hybrid Composites". Thesis, 2009. http://hdl.handle.net/10012/4712.
Pełny tekst źródłaMache, Ashok Ranganath. "An Advanced Study on Jute-Polyester Composites for Mechanical Design and Impact Safety Applications". Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3532.
Pełny tekst źródłaMache, Ashok Ranganath. "An Advanced Study on Jute-Polyester Composites for Mechanical Design and Impact Safety Applications". Thesis, 2015. http://etd.iisc.ernet.in/2005/3532.
Pełny tekst źródłaKsiążki na temat "Hybrid biocomposites"
Dorozhkin, Sergey V. Calcium orthophosphate-based biocomposites and hybrid biomaterials. Hauppauge, N.Y: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaDorozhkin, Sergey V. Biocomposites and Hybrid Biomaterials of Calcium Orthophosphates with Polymers. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaDorozhkin, Sergey V. Biocomposites and Hybrid Biomaterials of Calcium Orthophosphates with Polymers. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaBiocomposites and Hybrid Biomaterials of Calcium Orthophosphates with Polymers. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaDorozhkin, Sergey V. Biocomposites and Hybrid Biomaterials of Calcium Orthophosphates with Polymers. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaDorozhkin, Sergey V. Biocomposites and Hybrid Biomaterials of Calcium Orthophosphates with Polymers. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaDorozhkin, Sergey V. Biocomposites and Hybrid Biomaterials of Calcium Orthophosphates with Polymers. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaJawaid, Mohammad, Naheed Saba i Mohamed Thariq. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier Science & Technology, 2018.
Znajdź pełny tekst źródłaDorozhkin, Sergey V. Biocomposites and Hybrid Biomaterials of Calcium Orthophosphates (CaPO4) with Polymers. CRC Press, 2018. http://dx.doi.org/10.1201/9780429439377.
Pełny tekst źródłaFailure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier, 2019. http://dx.doi.org/10.1016/c2016-0-04423-6.
Pełny tekst źródłaCzęści książek na temat "Hybrid biocomposites"
Shahzad, Asim, i Sana Ullah Nasir. "Mechanical Properties of Natural Fiber/Synthetic Fiber Reinforced Polymer Hybrid Composites". W Green Biocomposites, 355–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46610-1_15.
Pełny tekst źródłaKuram, Emel. "Hybrid Biocomposites: Utilization in Aerospace Engineering". W Advanced Composites in Aerospace Engineering Applications, 281–301. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88192-4_14.
Pełny tekst źródłaButylina, Svetlana. "Polypropylene (PP)-Based Hybrid Biocomposites and Bionanocomposites". W Polypropylene-Based Biocomposites and Bionanocomposites, 113–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119283621.ch5.
Pełny tekst źródłaVoicu, Stefan Ioan, i Marius Sandru. "Composite Hybrid Membrane Materials for Artificial Organs". W Handbook of Bioceramics and Biocomposites, 407–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12460-5_20.
Pełny tekst źródłaVoicu, Stefan Ioan, i Marius Sandru. "Composite Hybrid Membrane Materials for Artificial Organs". W Handbook of Bioceramics and Biocomposites, 1–19. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09230-0_20-1.
Pełny tekst źródłaTampieri, Anna, Michele Iafisco, Simone Sprio, Andrea Ruffini, Silvia Panseri, Monica Montesi, Alessio Adamiano i Monica Sandri. "Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine". W Handbook of Bioceramics and Biocomposites, 119–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12460-5_6.
Pełny tekst źródłaTampieri, Anna, Michele Iafisco, Simone Sprio, Andrea Ruffini, Silvia Panseri, Monica Montesi, Alessio Adamiano i Monica Sandri. "Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine". W Handbook of Bioceramics and Biocomposites, 1–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09230-0_6-1.
Pełny tekst źródłaMukhtar, I., Z. Leman, M. R. Ishak i E. S. Zainudin. "Sugar Palm Fiber–Reinforced Polymer Hybrid Composites: An Overview". W Sugar Palm Biofibers, Biopolymers, and Biocomposites, 145–64. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429443923-8.
Pełny tekst źródłaSathishkumar, T. P., S. Ramakrishnan i P. Navaneethakrishnan. "Effect of Glass and Banana Fiber Mat Orientation and Number of Layers on Mechanical Properties of Hybrid Composites". W Biofibers and Biopolymers for Biocomposites, 295–312. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40301-0_15.
Pełny tekst źródłaFarhan, Muhammad, M. T. Mastura, Shahid Pervez Ansari, Muhammed Muaz, Mohammad Azeem i S. M. Sapuan. "Advanced Potential Hybrid Biocomposites in Aerospace Applications: A Comprehensive Review". W Advanced Composites in Aerospace Engineering Applications, 127–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88192-4_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Hybrid biocomposites"
Petlin, Danila, Sergey Tverdokhlebov, Victor Ignatov i Igor Stepanov. "Hybrid biocomposites for steel implants". W 2012 7th International Forum on Strategic Technology (IFOST). IEEE, 2012. http://dx.doi.org/10.1109/ifost.2012.6357565.
Pełny tekst źródłaRamesh, P., B. Durga Prasad i K. L. Narayana. "Morphological and mechanical properties of treated kenaf fiber/MMT clay reinforced PLA hybrid biocomposites". W PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AUTOMOTIVE INNOVATION GREEN ENERGY VEHICLE: AIGEV 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5085606.
Pełny tekst źródłaBavan, D. Saravana, i G. C. Mohan Kumar. "Significant aspects on thermal degradation of hybrid biocomposite material". W PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810728.
Pełny tekst źródłaZakuwan, Siti Zarina, Ishak Ahmad i Nazaruddin Ramli. "Preparation of hybrid nano biocomposite κ-carrageenan/cellulose nanocrystal/nanoclay". W THE 2013 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2013 Postgraduate Colloquium. AIP Publishing LLC, 2013. http://dx.doi.org/10.1063/1.4858742.
Pełny tekst źródłaAnuar, H., H. Noor Azlina, A. B. K. Suzana, M. R. Kaiser, N. N. Bonnia, S. N. Surip i S. B. Abd Razak. "Effect of PEG on impact strength of PLA hybrid biocomposite". W 2012 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). IEEE, 2012. http://dx.doi.org/10.1109/isbeia.2012.6422930.
Pełny tekst źródłaMawardi, Indra, Samsul Rizal, Sri Aprilia i Muhammad Faisal. "Evaluation of thermal and spectroscopic properties of hybrid biocomposite OPW/ramie fiber for materials building". W THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON BASIC AND APPLIED SCIENCE (ICOWOBAS) 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0110223.
Pełny tekst źródła