Gotowa bibliografia na temat „Human Simulations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Human Simulations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Human Simulations"
Aarsæther, Karl Gunnar, i Torgeir Moan. "Adding the Human Element to Ship Manoeuvring Simulations". Journal of Navigation 63, nr 4 (13.09.2010): 695–716. http://dx.doi.org/10.1017/s037346331000024x.
Pełny tekst źródłaValencia, Alvaro, Patricio Burdiles, Miguel Ignat, Jorge Mura, Eduardo Bravo, Rodrigo Rivera i Juan Sordo. "Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties". Computational and Mathematical Methods in Medicine 2013 (2013): 1–18. http://dx.doi.org/10.1155/2013/293128.
Pełny tekst źródłaCiunel, Stefanita, Dragos Laurentiu Popa, George Gherghina, Mihaela Liana Bogdan i Dragos Tutunea. "Human Head-Neck System Behavior during Virtual Impact Automotive Simulations". Applied Mechanics and Materials 659 (październik 2014): 177–82. http://dx.doi.org/10.4028/www.scientific.net/amm.659.177.
Pełny tekst źródłaParag Udaysinh More, Kumar Sachin, Mykhailo Pervak, Olha Yehorenko i Oleksandr Rogachevsky. "REVIEW OF SIMULATION MEDICAL TECHNOLOGIES IMPACT ON MODERN EDUCATION". InterConf, nr 16(121) (20.08.2022): 224–39. http://dx.doi.org/10.51582/interconf.19-20.08.2022.023.
Pełny tekst źródłaGillette, Jane, Henry Gleitman, Lila Gleitman i Anne Lederer. "Human simulations of vocabulary learning". Cognition 73, nr 2 (grudzień 1999): 135–76. http://dx.doi.org/10.1016/s0010-0277(99)00036-0.
Pełny tekst źródłaIbrahim, K. M. "Human Population Genetics: Simulations of human colonization history". Heredity 93, nr 2 (2.06.2004): 124–25. http://dx.doi.org/10.1038/sj.hdy.6800495.
Pełny tekst źródłaValero-Lara, Pedro, Ivan Martínez-Pérez, Raül Sirvent, Antonio J. Peña, Xavier Martorell i Jesús Labarta. "Simulating the behavior of the Human Brain on GPUs". Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 73 (2018): 63. http://dx.doi.org/10.2516/ogst/2018061.
Pełny tekst źródłaTolk, Andreas, Wesley J. Wildman, F. LeRon Shults i Saikou Y. Diallo. "Human Simulation as the Lingua Franca for Computational Social Sciences and Humanities: Potential and Pitfalls". Journal of Cognition and Culture 18, nr 5 (28.11.2018): 462–82. http://dx.doi.org/10.1163/15685373-12340040.
Pełny tekst źródłaChoi, Kiri, Lucian P. Smith, J. Kyle Medley i Herbert M. Sauro. "phraSED-ML: A paraphrased, human-readable adaptation of SED-ML". Journal of Bioinformatics and Computational Biology 14, nr 06 (grudzień 2016): 1650035. http://dx.doi.org/10.1142/s0219720016500359.
Pełny tekst źródłaRoney, Caroline H., Rokas Bendikas, Farhad Pashakhanloo, Cesare Corrado, Edward J. Vigmond, Elliot R. McVeigh, Natalia A. Trayanova i Steven A. Niederer. "Constructing a Human Atrial Fibre Atlas". Annals of Biomedical Engineering 49, nr 1 (26.05.2020): 233–50. http://dx.doi.org/10.1007/s10439-020-02525-w.
Pełny tekst źródłaRozprawy doktorskie na temat "Human Simulations"
Mufti, H. (Haseeb). "Human body communication performance simulations". Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201606092482.
Pełny tekst źródłaEngmo, Vidar. "Representation of Human Behavior in Military Simulations". Thesis, Norwegian University of Science and Technology, Department of Telematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9798.
Pełny tekst źródłaThe purpose of this master thesis was to investigate the psychological and computational basis for human behavior representation (HBR) in military simulations and identify problem areas of existent software agent frameworks that provide computer generated forces (CGF) with human like cognitive abilities. The master thesis identifies psychological properties that influence human cognition in an operational environment through a theoretical study of operational and cognitive psychology. The psychological properties of human cognition are then connected to artificial intelligence through a theoretical study of agents and multi-agent systems and form the foundation for identifying general HBR properties. The HBR properties are used as evaluation markers that constitute the basis for constructing an evaluation of relevant agent frameworks thereby visualizing their strengths and weaknesses. The problem areas of incorporating artificial intelligence into CGF are further concretized by the development of a demonstrator that interacts with a synthetic environment. The demonstrator is an implementation of a tank platoon in the agent framework Jadex. The synthetic environment is provided by VR-Forces which is a product by MÄK technologies. The thesis makes a distinction between the conceptual structure of agent frameworks and their actual implementation. According to this master thesis it is the output of the agent framework that is the most important feature not how the output came into being. Producing the correct output requires the selection of the correct tools for the job. The selection of an agent framework should be taken on the background of an evaluation of the simulation requirements. A large portion of the development time is consumed by the development of application and communication interfaces. The problem is a result of lacking standardization and that most cognitive agent frameworks are experimental in nature. In addition the artificial intelligence (AI) in such simulations is often dived into levels, where the synthetic environment takes care of low-level AI and the agent framework the high-level AI. Tight synchronization between low and high-level AI is important if one wishes to create sensible behavior. The purpose of an agent framework in conjunction with CGF is thereby ensuring rapid development and testing of behavior models.
Starling, James Kendall. "Prioritizing unaided human search in military simulations". Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5622.
Pełny tekst źródłaSearch and Target Acquisition (STA) in military simulations is the process of first identifying targets in a particular setting, then determining the probability of detection. This study will focus on the search aspect in STA, particularly with unaided vision. Current algorithms in combat models use an antiquated windshield wiper search pattern when conducting search. The studies used to determine these patterns used aided vision, such as binoculars or night vision devices. Very little research has been conducted for unaided vision and particularly not in urban environments. This study will use a data set taken from an earlier study in Fort Benning, GA, which captured the fixation points of 27 participants in simulated urban environments. This study achieved strong results showing that search is driven by salient scene information and is not random, using a series of nonparametric tests. The proposed algorithm, using points of interest (POIs) for the salient scene information, showed promising results for predicting the initial direction of search from the empirical data. However, the best results were realized when breaking the field of regard (FOR) into a small number of fields of view (FOVs).
Singh, Meghendra. "Human Behavior Modeling and Calibration in Epidemic Simulations". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/87050.
Pełny tekst źródłaMaster of Science
In the real world, individuals can decide to adopt certain behaviors that reduce their chances of contracting a disease. For example, using hand sanitizers can reduce an individual‘s chances of getting infected by influenza. These behavioral decisions, when taken by many individuals in the population, can completely change the course of the disease. Such behavioral decision-making is generally not considered during in-silico simulations of infectious diseases. In this thesis, we address this problem by developing a methodology to create and calibrate a decision making model that can be used by agents (i.e., synthetic representations of humans in simulations) in a data driven way. Our method also finds a cost associated with such behaviors and matches the distribution of behavior observed in the real world with that observed in a survey. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.
Kaphle, Manindra. "Simulations of human movements through temporal discretization and optimization". Licentiate thesis, KTH, Mechanics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4585.
Pełny tekst źródłaStudy of physical phenomena by means of mathematical models is common in various branches of engineering and science. In biomechanics, modelling often involves studying human motion by treating the body as a mechanical system made of interconnected rigid links. Robotics deals with similar cases as robots are often designed to imitate human behavior. Modelling human movements is a complicated task and, therefore, requires several simplifications and assumptions. Available computational resources often dictate the nature and the complexity of the models. In spite of all these factors, several meaningful results are still obtained from the simulations.
One common problem form encountered in real life is the movement between known initial and final states in a pre-specified time. This presents a problem of dynamic redundancy as several different trajectories are possible to achieve the target state. Movements are mathematically described by differential equations. So modelling a movement involves solving these differential equations, along with optimization to find a cost effective trajectory and forces or moments required for this purpose.
In this study, an algorithm developed in Matlab is used to study dynamics of several common human movements. The main underlying idea is based upon temporal finite element discretization, together with optimization. The algorithm can deal with mechanical formulations of varying degrees of complexity and allows precise definitions of initial and target states and constraints. Optimization is carried out using different cost functions related to both kinematic and kinetic variables.
Simulations show that generally different optimization criteria give different results. To arrive on a definite conclusion on which criterion is superior over others it is necessary to include more detailed features in the models and incorporate more advanced anatomical and physiological knowledge. Nevertheless, the algorithm and the simplified models present a platform that can be built upon to study more complex and reliable models.
Kaphle, Manindra. "Simulations of human movements trough temporal descretization and optimization /". Stockholm : Department of Mechanics, Royal Institute of Technology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4585.
Pełny tekst źródłaHe, Xiaoyi. "Numerical simulations of blood flow in human coronary arteries". Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16685.
Pełny tekst źródłaCrawford, Kenneth. "Effect of Safety Factors on Timed Human Egress Simulations". University of Canterbury. Civil Engineering, 1999. http://hdl.handle.net/10092/8261.
Pełny tekst źródłaJungkunz, Patrick. "Modeling human visual perception for target detection in military simulations". Monterey, Calif. : Naval Postgraduate School, 2009. http://handle.dtic.mil/100.2/ADA501666.
Pełny tekst źródłaDissertation Advisor(s): Darken, Christian J. "June 2009." Description based on title screen as viewed on July 10, 2009. DTIC Identifiers: Human visual perception, visual attention, eye tracking, human behavior modeling, visual search, semantic relevance, relevance mapa. Author(s) subject terms: Human Visual Perception, Visual Attention, Eye Movements, Eye Tracking, Human Behavior Modeling, Target Detection, Visual Search, Semantic Relevance, Relevance Map. Includes bibliographical references (p. 145-149). Also available in print.
Rivas, Romero Daniela Paz. "Molecular Dynamics Simulations of Human Glucose Transporters and Glutamate Transporters". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25113.
Pełny tekst źródłaKsiążki na temat "Human Simulations"
Rothrock, Ling, i S. Narayanan, red. Human-in-the-Loop Simulations. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-883-6.
Pełny tekst źródłaDr, Matsumura Shuichi, Forster Peter 1967-, Renfrew Colin 1937-, McDonald Institute for Archaeological Research. i Alfred P. Sloan Foundation, red. Simulations, genetics and human prehistory. Cambridge, UK: McDonald Institute for Archaeological Research, 2008.
Znajdź pełny tekst źródłaDr, Matsumura Shuichi, Forster Peter 1967-, Renfrew Colin 1937-, McDonald Institute for Archaeological Research. i Alfred P. Sloan Foundation, red. Simulations, genetics and human prehistory. Cambridge, UK: McDonald Institute for Archaeological Research, 2008.
Znajdź pełny tekst źródłaDr, Matsumura Shuichi, Forster Peter 1967-, Renfrew Colin 1937-, McDonald Institute for Archaeological Research. i Alfred P. Sloan Foundation, red. Simulations, genetics and human prehistory. Cambridge, UK: McDonald Institute for Archaeological Research, 2008.
Znajdź pełny tekst źródłaS, Narayanan, i SpringerLink (Online service), red. Human-in-the-Loop Simulations: Methods and Practice. London: Springer-Verlag London Limited, 2011.
Znajdź pełny tekst źródłaPhysioEx 9.0 laboratory simulations in physiology. Boston: Benjamin Cummings, 2012.
Znajdź pełny tekst źródłaTimothy, Stabler, red. PhysioEx 7.0 for human physiology: Laboratory simulations in physiology. San Francisco: Pearson/Benjamin Cummings, 2008.
Znajdź pełny tekst źródłaW, Pew Richard, Mavor Anne S i National Research Council (U.S.). Panel on Modeling Human Behavior and Command Decision Making: Representations for Military Simulations., red. Modeling human and organizational behavior: Application to military simulations. Washington, D.C: National Academy Press, 1998.
Znajdź pełny tekst źródła1955-, Ganesh L. S., i Varghese Koshy, red. Sustainability and human settlements: Fundamental issues, modeling and simulations. Thousand Oaks, Calif: Sage Publications, 2005.
Znajdź pełny tekst źródłaPeter, Zao, red. PhysioEX 6.0 for A&P: Laboratory simulations in physiology. San Francisco: Pearson/Benjamin Cummings, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Human Simulations"
Nakoinz, Oliver, i Daniel Knitter. "Simulations". W Modelling Human Behaviour in Landscapes, 233–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29538-1_12.
Pełny tekst źródłaKallmann, Marcelo, Etienne Sevin i Daniel Thalmann. "Constructing Virtual Human Life Simulations". W Deformable Avatars, 240–47. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-0-306-47002-8_21.
Pełny tekst źródłaBainbridge, William Sims. "A Virtual Human-Centered Galaxy". W Computer Simulations of Space Societies, 195–221. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90560-0_8.
Pełny tekst źródłaRitter, Frank E., Michael J. Schoelles, Karen S. Quigley i Laura Cousino Klein. "Determining the Number of Simulation Runs: Treating Simulations as Theories by Not Sampling Their Behavior". W Human-in-the-Loop Simulations, 97–116. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-883-6_5.
Pełny tekst źródłaSchillaci, Guido, Bruno Lara i Verena V. Hafner. "Internal Simulations for Behaviour Selection and Recognition". W Human Behavior Understanding, 148–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34014-7_13.
Pełny tekst źródłaNarayanan, S., i Phani Kidambi. "Interactive Simulations: History, Features, and Trends". W Human-in-the-Loop Simulations, 1–13. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-883-6_1.
Pełny tekst źródłaGanapathy, Subhashini, Sasanka Prabhala, S. Narayanan, Raymond R. Hill i Jennie J. Gallimore. "Interactive Model-Based Decision Making for Time-Critical Vehicle Routing". W Human-in-the-Loop Simulations, 203–20. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-883-6_10.
Pełny tekst źródłaThiruvengada, Hari, Anand Tharanathan i Paul Derby. "PerFECT: An Automated Framework for Training on the Fly". W Human-in-the-Loop Simulations, 221–38. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-883-6_11.
Pełny tekst źródłaPrabhala, Sasanka, Jennie J. Gallimore i Jesse R. Lucas. "Evaluating Human Interaction with Automation in a Complex UCAV Control Station Simulation Using Multiple Performance Metrics". W Human-in-the-Loop Simulations, 239–58. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-883-6_12.
Pełny tekst źródłaRothrock, Ling. "Performance Measurement and Evaluation in Human-in-the-Loop Simulations". W Human-in-the-Loop Simulations, 15–53. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-883-6_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Human Simulations"
Colella, Vanessa, Richard Borovoy i Mitchel Resnick. "Participatory simulations". W CHI98: ACM Conference on Human Factors and Computing Systems. New York, NY, USA: ACM, 1998. http://dx.doi.org/10.1145/286498.286503.
Pełny tekst źródłaTaylor, Thomas, i David E. Johnson. "Tangible simulations Generalized haptic devices for human-guided computer simulations". W 2013 International Conference on Collaboration Technologies and Systems (CTS). IEEE, 2013. http://dx.doi.org/10.1109/cts.2013.6567234.
Pełny tekst źródłaXiang, Yujiang, Joo H. Kim, Hyun-Joon Chung, James Yang i Hyun-Jung Kwon. "Human Stair Ascent and Descent Simulations". W ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34324.
Pełny tekst źródłaZhou, Suiping, Linbo Luo, Wee Lit Koh i Shang Ping Ting. "Human Behavior Modeling for Crowd Simulations". W Annual International Conferences on Computer Games, Multimedia and Allied Technology. Global Science & Technology Forum (GSTF), 2008. http://dx.doi.org/10.5176/978-981-08-8227-3_cgat08-4.
Pełny tekst źródła"Interacting with Human Simulations: a Prototype Application". W 2019 Spring Simulation Conference. Society for Modeling and Simulation International (SCS), 2019. http://dx.doi.org/10.22360/springsim.2019.anss.022.
Pełny tekst źródłaBerman, John P., Abouzar Kaboudian, Ilija Uzelac, Shahriar Iravanian, Tinen Iles, Paul A. Iaizzo, Hyunkyung Lim i in. "Interactive 3D Human Heart Simulations on Segmented Human MRI Hearts". W 2021 Computing in Cardiology (CinC). IEEE, 2021. http://dx.doi.org/10.23919/cinc53138.2021.9662948.
Pełny tekst źródłaPuga-Gonzalez, Ivan, i Saikou Y. Diallo. "Interacting With Human Simulations: A Prototype Application". W 2019 Spring Simulation Conference (SpringSim). IEEE, 2019. http://dx.doi.org/10.23919/springsim.2019.8732907.
Pełny tekst źródłaWiechel, John, Sandra Metzler, Dawn Freyder i Nick Kloppenborg. "Human Fall Evaluation Using Motion Capture and Human Modeling". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66790.
Pełny tekst źródłaOganezova, I., D. Pommerenke, J. Zhou, K. Ghosh, A. Hosseinbeig, J. Lee, N. Tsitskishvili, T. Jobava, Z. Sukhiashvili i R. Jobava. "Human body impedance modelling for ESD simulations". W 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017. http://dx.doi.org/10.1109/isemc.2017.8077944.
Pełny tekst źródłaCassimatis, Nicholas L. "Integrated simulations of human cognition and behavior". W Defense and Security, redaktorzy Dawn A. Trevisani i Alex F. Sisti. SPIE, 2005. http://dx.doi.org/10.1117/12.604918.
Pełny tekst źródłaRaporty organizacyjne na temat "Human Simulations"
Cicowiez, Martín, i Agustín Filippo. Human Development: Simulations in a CGE Model for Haiti. Inter-American Development Bank, styczeń 2019. http://dx.doi.org/10.18235/0001535.
Pełny tekst źródłaBurgess, Rene G. A New Architecture for Improved Human Behavior in Military Simulations. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2008. http://dx.doi.org/10.21236/ada482030.
Pełny tekst źródłaDraeger, E., B. Bennion, F. Gygi i F. Lightstone. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment. Office of Scientific and Technical Information (OSTI), luty 2006. http://dx.doi.org/10.2172/899113.
Pełny tekst źródłaAlmulihi, Qasem, i Asaad Shujaa. Does Departmental Simulation and Team Training Program Reduce Medical Error and Improve Quality of Patient Care? A Systemic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, marzec 2022. http://dx.doi.org/10.37766/inplasy2022.3.0006.
Pełny tekst źródłaTuller, Markus, Asher Bar-Tal, Hadar Heller i Michal Amichai. Optimization of advanced greenhouse substrates based on physicochemical characterization, numerical simulations, and tomato growth experiments. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7600009.bard.
Pełny tekst źródłaJohnson, Edgar, Frank Moses i Joseph Psotka. Human Performance in Simulation Workshop. Fort Belvoir, VA: Defense Technical Information Center, listopad 1998. http://dx.doi.org/10.21236/ada357596.
Pełny tekst źródłaBernard, Michael Lewis, Dereck H. Hart, Stephen J. Verzi, Matthew R. Glickman, Paul R. Wolfenbarger i Patrick Gordon Xavier. Simulating human behavior for national security human interactions. Office of Scientific and Technical Information (OSTI), styczeń 2007. http://dx.doi.org/10.2172/900422.
Pełny tekst źródłaBoring, Ronald Laurids, Rachel Elizabeth Shirley, Jeffrey Clark Joe i Diego Mandelli. Simulation and Non-Simulation Based Human Reliability Analysis Approaches. Office of Scientific and Technical Information (OSTI), grudzień 2014. http://dx.doi.org/10.2172/1235194.
Pełny tekst źródłaBadler, Norman I. Center for Human Modeling and Simulation. Fort Belvoir, VA: Defense Technical Information Center, listopad 1994. http://dx.doi.org/10.21236/ada295101.
Pełny tekst źródłaBadler, Norman I. Center For Human Modeling and Simulation. Fort Belvoir, VA: Defense Technical Information Center, marzec 1995. http://dx.doi.org/10.21236/ada301724.
Pełny tekst źródła