Rozprawy doktorskie na temat „Human Immunodeficient Virus”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Human Immunodeficient Virus”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Wilson, Colleen. "Nurses with human immunodeficiency virus or acquired immunodeficiency syndrome". Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23974.
Pełny tekst źródłaBrettle, Raymond Patrick. "Human immunodeficiency virus : the Edinburgh epidemic". Thesis, University of Edinburgh, 1995. http://hdl.handle.net/1842/20883.
Pełny tekst źródłaWalker, S. M. "Transactivation of human immunodeficiency virus by human cytomegalovirus". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387104.
Pełny tekst źródłaCochrane, Alexandra. "Human immunodeficiency virus infection of CD8 lymphocytes". Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/24468.
Pełny tekst źródłaLangeni, Delile Gertrude. "Self-Disclosure of Human Immunodeficiency Virus Status in Personal Relationships: Perceptions of South Africans Living with Human Immunodeficiency Virus". ScholarWorks, 2018. https://scholarworks.waldenu.edu/dissertations/4798.
Pełny tekst źródłaPise-Masison, Cynthia Ann. "Human Immunodeficiency Virus Type-1 Infection of Human Myeloid Cells". eScholarship@UMMS, 1994. https://escholarship.umassmed.edu/gsbs_diss/87.
Pełny tekst źródłaLoo, Ryan K. "Sampling Considerations in Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome Needs Assessments". DigitalCommons@USU, 2003. https://digitalcommons.usu.edu/etd/6179.
Pełny tekst źródłaShi, Ruili. "Biological studies on inhibitors of human immunodeficiency virus". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0024/NQ37913.pdf.
Pełny tekst źródłaMcKiel, Vanessa. "Cytokine-induced alterations in human immunodeficiency virus multiplication". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55512.
Pełny tekst źródłaSince HIV replication is dependent on cellular activation, immunosuppressive cytokines which deactivate T-cells and macrophages may be important modulators of an antiviral effect. We previously demonstrated the anti-HIV effects of IFN$ alpha$2, alone and in a cooperative combination with 3$ sp prime$-azido-2$ sp prime$3$ sp prime$-dideoxythymidine (AZT), in limiting the expression of HIV IIIB in promonocytic U937 cells. We further tested the anti-HIV potential of the immunosuppressive cytokines transforming growth factor beta (TGF-$ beta$1) and interleukin-10 (IL-10), alone and in combination with AZT. TGF-$ beta$1 as a single agent had no effect on the multiplication of HIV IIIB in de novo infected PLB 985 cells; however, co-treatment with TGF-$ beta$1 and AZT synergistically slowed virus multiplication within the first week following infection. The synergistic actions of TGF-$ beta$1 and AZT were also observed in PLB 985 cells infected with an AZT-resistant strain of HIV-1. In contrast, IL-10 seemed to enhance HIV IIIB multiplication in PLB 985 cells. These antiviral treatments had no inhibitory effect on HIV IIIB multiplication in the T-cell line Jurkat. Elucidation of the role of cytokines in controlling the degree of HIV multiplication may have an impact on both clinical treatments and understanding the progression to AIDS.
Harrison, Thomas Stephen. "Interactions between Human Immunodeficiency Virus and Cryptococcus neoformans". Thesis, St George's, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299059.
Pełny tekst źródłaChua, Ser Ling. "Papular pruritic eruption of human immunodeficiency virus infection". Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30750/.
Pełny tekst źródłaGao, Zhanhai School of Mathematics UNSW. "Modelling Human Immunodeficiency Virus and Hepatitis C Virus Epidemics in Australia". Awarded by:University of New South Wales. School of Mathematics, 2001. http://handle.unsw.edu.au/1959.4/18187.
Pełny tekst źródłaHeusinger, Elena [Verfasser]. "Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2 / Elena Heusinger". Ulm : Universität Ulm, 2019. http://d-nb.info/1177882604/34.
Pełny tekst źródłaOllerton, Matthew T. "Capacity of Human Immunodeficiency Virus Targeting Chimeric Antigen Receptor T Cells to Eliminate Follicular Dendritic Cells Bearing Human Immunodeficiency Virus Immune Complexes". BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7240.
Pełny tekst źródłaLi, Yan. "Processing and secretion of human immunodeficiency virus glycoprotein,gp120". Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/10962.
Pełny tekst źródłaZeibdawi, Abdul-Rahman. "Recombinant human immunodeficiency virus reverse transcriptases, activity and fidelity". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20986.pdf.
Pełny tekst źródłaYim, Chi-ho Howard. "Cytokine dysregulation by human immunodeficiency virus-1 transactivating protein". Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36987700.
Pełny tekst źródłaBrasey, Ann. "Translation regulation of the Human Immunodeficiency Virus type 1". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85890.
Pełny tekst źródłaFor billions of years, viruses evolved strategies to enter and take control of organisms to generate progeny viruses. Eukaryotic cell viruses developed various means of hijacking the cellular protein synthesis machinery. Understanding these mechanisms opens a unique window of opportunity: that of eventually being able to specifically inhibit virus protein production. In this context, we investigated how HIV-1 translation is regulated. This work initially characterizes an RNA structural element in the HIV-1 leader able to directly recruit the protein synthesis machinery, i.e. an internal ribosome entry site (IRES). This element is capable of driving protein synthesis during the G2/M cell-cycle phase when cap-dependent translation is inhibited.
Several virus families use IRESs. IRES-dependent translation usually involves a subset of the factors implicated in cellular protein synthesis. However, toeprinting studies suggest that HIV-1 requires factors different from the canonical translation initiation factors to initiate protein synthesis. HeLa cell protein fractionation studies identified p97, an eIF4G homolog, its apoptotic cleavage product, p86, and a novel protein, ropp120, as putative HIV-1 transactivators. Further testing revealed that these proteins do not directly stimulate HIV-1 leader dependent translation. Experiments also showed that La autoantigen, another likely HIV-1 IRES transactivator candidate, does not directly stimulate HIV-1 dependent translation.
The last portion of this work investigates the interplay of the HIV-1 IRES with cap structures, polyA tails and the HIV-1 3'UTR region since these elements are present on the viral genomic RNA. We found that the HIV-1 leader does not synergize nor does it interfere with the translation stimulation mediated by the cap, the polyA and the HIV-1 3'UTR. Data presented herein suggest that the HIV-1 leader is an IRES able to shunt initiation complexes from the cap structure to drive protein synthesis.
Zemmel, Rodney W. "Rev-RRE interactions in human immunodeficiency virus gene expression". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390234.
Pełny tekst źródłaYim, Chi-ho Howard, i 嚴志濠. "Cytokine dysregulation by human immunodeficiency virus-1 transactivating protein". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B36987700.
Pełny tekst źródłaReeves, Jacqueline Denise. "CD4-independent infection by human immunodeficiency virus type 2". Thesis, Institute of Cancer Research (University Of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368031.
Pełny tekst źródłaKhiytani, Dheeraj K. "Pre-integration complexes of human immunodeficiency virus type 1". Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247285.
Pełny tekst źródłaWilley, Samantha. "Cellular tropism of human immunodeficiency virus : receptors and inhibitors". Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404902.
Pełny tekst źródłaBoffito, Marta. "Clinical pharmacology of human immunodeficiency virus-1 protease inhibitors". Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403237.
Pełny tekst źródłaJones, Christopher P. "Primer tRNA annealing by human immunodeficiency virus type 1". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337962197.
Pełny tekst źródłaBurnett, Mary Susan. "Development of a live vaccine for human immunodeficiency virus /". Digital version accessible at:, 1997. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaCook, Scott C. "Human immunodeficiency virus : determining predictors of unsafe sexual behavior /". free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9962514.
Pełny tekst źródłaJordán, de Paiz Ana. "Synonymous changes in the human immunodeficiency virus genome as a strategy to study virus biology". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669843.
Pełny tekst źródłaSynonymous genome recoding has been widely used to study different aspects of viral biology. It is based on modifying the nucleotide sequence of a gene without changing the amino acid sequence, thus the protein sequence is not affected. Previous studies have demonstrated viral attenuation by reduction in protein expression after synonymous recoding. Likewise, this tool has allowed the identification of RNA secondary structures, the description of viral factors or interactions with the innate immune system, as well as unravelling the temporal regulation of viral genes. Here, we synonymously recoded the Human Immunodeficiency Virus 1 (HIV-1) protease and envelope genes. We compared the development of HIV-1 resistance to protease inhibitors (PIs) between wild-type (WT) virus and a synthetic virus (MAX) carrying a codon pair re-engineered protease sequence including 38 (13%) synonymous mutations. WT and MAX viruses showed indistinguishable replication. Both viruses were subjected to serial passages in MT-4 cells with selective pressure from the PIs atazanavir (ATV) and darunavir (DRV) and they both developed phenotypic resistance to PIs. Ultra-deep sequence clonal analysis revealed that both viruses harbored previously described resistance mutations to ATV and DRV. However, the WT and MAX virus proteases showed different resistance variant repertoires. Our results indicate that HIV-1 recoded protease showed similar mutational robustness and evolvability to WT, but the position in sequence space delineates the evolution of each mutant spectra. To study how synonymous mutations affected virus replication, Env mutants were designed by changing its codon usage and codon pair usage. In addition, the number of CpG dinucleotides were also altered. The synthetic Recoded-env virus variant was lethal for HIV-1 after changing its codon usage by synonymously altering 39 nucleotides (1,5%). Protein expression analyses revealed that translation was modified in Recoded-env. Several mutants were designed based on Recoded-env to further investigate the lethality of this mutant. One of them, Recoded_env_3’Bwt, only reverted to WT two mutations of the same codon, named codon 34, located in gp41 coding region. Interestingly, this virus variant did not show significant differences in replication capacity both in MT-4 cells and PBMCs nor a dramatic decrease in protein production, when compared to WT. Analyzing sequences of gp41 in which codon 34 is located, we concluded that the WT RNA secondary structure was severely disrupted in Recoded-env. Similarly, after changing env codon pair usage, different virus variants which optimized, deoptimized or maintained neutral the codon pair bias (CPB) confirmed the relevance of synonymous substitutions in gp41 coding region. Only one of the virus variants, MinCpG.2, was replicative without reverting gp41 to WT. Differences in this region were found between MinCpG.2 and the rest of the designed CPB variants that 16 explained their lethality. We also observed that two virus variants, Max-3’wt and MaxCpG-3’wt, had significantly lower replication capacity when compared to WT although they had an optimized CPB. Moreover, the CPB virus variants with different number of CpGs allowed us to conclude that, in our model, increasing the number of CpGs did not attenuate the virus. Overall, our results confirmed that synonymous recoding a gene or genome is a useful tool to unravel different aspects of the virus biology.
Scholes, Andrea Gwendoline Mary. "Effect of human immunodeficiency virus infection on oral shedding of human herpesviruses". Thesis, University of Liverpool, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295830.
Pełny tekst źródłaMeys, Rhonda. "Aspects of human papillomavirus (HPV) disease in human immunodeficiency virus (HIV) infection". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10730.
Pełny tekst źródłaMboto, Clement Ibi. "Studies on Human Immunodeficiency Virus and hepatitus C virus coinfection in the Gambia". Thesis, Kingston University, 2005. http://eprints.kingston.ac.uk/20370/.
Pełny tekst źródłaIwatani, Yasumasa. "Human Immunodeficiency Virus Type 1 Vpu modifies Cytopathic Effect through Augmented Virus Release". Kyoto University, 1997. http://hdl.handle.net/2433/202156.
Pełny tekst źródłaMatthews, James Robert. "Transcriptional activation of human immunodeficiency virus type 1 by NF-κb". Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/13981.
Pełny tekst źródłaKhalouei, Sam. "Translation initiation in human immunodeficiency virus type 1 (HIV-1)". Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27866.
Pełny tekst źródłaChambers, Anthony James St Vincent's Hospital UNSW. "The surgical management of patients with human immunodeficiency virus infection". Awarded by:University of New South Wales. St. Vincent's Hospital, 2001. http://handle.unsw.edu.au/1959.4/19367.
Pełny tekst źródłaMa, Meihui. "Interactions of human immunodeficiency virus type 1 proteins with astrocytes". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23632.pdf.
Pełny tekst źródłaBelzile, Jean-Philippe. "Redirecting lentiviral integration : a study of human immunodeficiency virus integrase". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97906.
Pełny tekst źródłaTwo cellular proteins have been proposed to perform integration targeting roles, the chromatin-remodeling factor integrase interactor 1 (INI1/hSNF5/BAF47) and the lens epithelium-derived growth factor/transcriptional co-activator (LEDGF). Here, we report the initiation of two novel integration assays to study the contribution of INI1 and LEDGF in target site selection. Elucidating these molecular determinants and their functional implications is also of particular interest to anti-HIV therapy and could have major impact on the safety of gene therapy protocols.
D'Addario, Mario G. Jr. "Cytokine gene expression in human immunodeficiency virus infected myeloid cells". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56776.
Pełny tekst źródłaMilev, Miroslav. "Characterizing the staufen 1 human immunodeficiency virus type 1 ribonucleoprotein". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96998.
Pełny tekst źródłaLe virus d'immunodéficience humaine de type 1 (VIH-1) est un membre de la famille de Rétrovirus et est responsable du syndrome d'immunodéficience acquise (SIDA). Considéré comme un parasite intracellulaire obligatoire, le VIH-1 utilise les protéines et les machineries cellulaires pour assurer la transmission aux cellules non infectées. Un des facteurs impliqués dans les étapes finales de réplication virale est la protéine Staufen1. Cette protéine est un composant important des ARNm ribonucléoprotéiques et joue des rôles clés dans le transport, la traduction et la dégradation de l'ARNm. Concernant le VIH-1, Staufen1 a été initialement découvert comme étant spécifiquement encapsidé dans les virions. Des travaux plus approfondis ont déterminé son association avec l'ARNv et le précurseur Gag dans les VIH-1 RNPs. Récemment, nous avons démontré que Staufen1 régule le processus d'assemblage viral en induisant le multimérisation de Gag.Dans le travail présent, nous avons employé la méthode de purification d'affinité en tandem suivie de la spectrométrie de masse pour caractériser les RNPs contenus dans Staufen1. Nous nous sommes concentrés sur la recherche des protéines qui s'associent aux complexes Staufen1 isolés des cellules qui expriment ou non VIH-1. Ensuite, nous avons effectué une comparaison détaillée du contenu protéique entre Staufen1 sous forme native et Staufen1 complexé au RNPs VIH-1 et nous avons défini les modulations causées par l'expression de VIH-1.Nous avons utilisé les méthodes de complémentation par fluorescence bimoléculaire et trimoleculaire qui permettent la visualisation et la localisation directes des interactions protéine-protéine et des interactions protéine-protéine et d'ARN dans des cellules vivantes, pour prouver que Gag et Staufen1 interagissent comme démontré par la fluorescence ponctuée ou les vésicules dans les cellules. Nous avons démontré que les protéines partenaires s'associent principalement dans le cytoplasme. Cependant, nous avons également constaté qu'ils interagissent dans des microdomaines membranaires contenant du cholestérol enrichis en GM-1. De manière importante, Gag recrute spécifiquement Staufen1 au niveau de ces membranes de radeaux lipidiques, suggérant une fonction essentielle de ce facteur d'hôte pendant l'assemblage de Gag. En particulier, des expériences de TriFC dans lesquelles une protéine partenaire est attachée à l'ARNm ont permis de montrer des interactions Gag-Staufen1 indiquant un recrutement actif des protéines lorsqu'elles sont attachées à l'ARNm.De façon générale, les travaux présentent des recherches de protéomique fondamentale et de visualisation de cellules vivantes d'interaction virus-hôte. Ces expériences présentent la caractérisation complète de la composition de Staufen1 RNPs et démontre comment le VIH-1 s'adapte pour ses propres besoins. Cette thèse s'enrichit également de notre compréhension des mécanismes et des caractéristiques dynamiques spécifiques des interactions virus- hôte (Gag-Staufen1) dans des cellules vivantes, contrôlées par des techniques récentes de complémentation de fluorescence. Les résultats présentés ici sont considérables et contribuent à l'avancée des recherches dans le domaine du VIH-1, parce qu'une meilleure compréhension du mécanisme de l'ensemblage et du bourgeonnement du rétrovirus augmente la possibilité de développer de nouvelles thérapies antivirales, visant les étapes tardives critiques du cycle viral de réplication.
Goulder, Philip J. R. "Escape of human immunodeficiency virus from the cellular immune response". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339291.
Pełny tekst źródłaBaird, Heather A. "Mechanisms of Intersubtype Recombination of Human Immunodeficiency Virus Type One". Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1120599751.
Pełny tekst źródłaWatson, Victoria. "The clinical pharmacology of Human Immunodeficiency Virus (HIV) therapy failure". Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/18853/.
Pełny tekst źródłaMotohara, Makiko. "Influence on thymopoiesis of simian and human immunodeficiency virus infection". Kyoto University, 2007. http://hdl.handle.net/2433/136437.
Pełny tekst źródła0048
新制・課程博士
博士(人間・環境学)
甲第13166号
人博第373号
新制||人||91(附属図書館)
18||D||174(吉田南総合図書館)
UT51-2007-H439
京都大学大学院人間・環境学研究科相関環境学
(主査)教授 小松 賢志, 助教授 倉橋 和義, 助教授 三浦 智行
学位規則第4条第1項該当
Anderson, Jon Paul. "Molecular diversity and evolution of human immunodeficiency virus type 1 /". Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8049.
Pełny tekst źródłaClark, W. Andrew, i Eileen M. Cress. "Nutritional Issues and Positive Living in Human Immunodeficiency Virus/AIDS". Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etsu-works/2495.
Pełny tekst źródłaKok, Tuckweng. "Early events in the replication cycle of human immunodeficiency virus /". Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phk79.pdf.
Pełny tekst źródłaCopy of author's previously published article on back end-paper. Includes bibliographical references (leaves 105-158).
Simmonds, Peter. "Detection of antibody responses to infection with herpes simplex virus and human immunodeficiency virus". Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/26933.
Pełny tekst źródłaAlimohammadi, Azin. "An investigation of susceptibility of alveolar macrophages to HIV 1 infection". Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289878.
Pełny tekst źródłaSchockmel, Gerard Alphonse. "Construction of a binding site for HIV-1 GP120 in rat CD4". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302857.
Pełny tekst źródłaAgranoff, Daniel David. "Cation transporters of mycobacterium tuberculosis". Thesis, St George's, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249372.
Pełny tekst źródła