Artykuły w czasopismach na temat „Human atrial cardiomyocyte”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Human atrial cardiomyocyte”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Schmid, Christina, Najah Abi-Gerges, Michael Leitner, Dietmar Zellner i Georg Rast. "Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes". Cells 10, nr 12 (30.11.2021): 3370. http://dx.doi.org/10.3390/cells10123370.
Pełny tekst źródłaXie, Duanyang, Ke Xiong, Xuling Su, Guanghua Wang, Qiang Ji, Qicheng Zou, Lingling Wang i in. "Identification of an endogenous glutamatergic transmitter system controlling excitability and conductivity of atrial cardiomyocytes". Cell Research 31, nr 9 (6.04.2021): 951–64. http://dx.doi.org/10.1038/s41422-021-00499-5.
Pełny tekst źródłaFreundt, Johanna K., Gerrit Frommeyer, Fabian Wötzel, Andreas Huge, Andreas Hoffmeier, Sven Martens, Lars Eckardt i Philipp S. Lange. "The Transcription Factor ATF4 Promotes Expression of Cell Stress Genes and Cardiomyocyte Death in a Cellular Model of Atrial Fibrillation". BioMed Research International 2018 (29.05.2018): 1–15. http://dx.doi.org/10.1155/2018/3694362.
Pełny tekst źródłaNesterova, Tatyana, Dmitry Shmarko, Konstantin Ushenin i Olga Solovyova. "In-silico analysis of aging mechanisms of action potential remodeling in human atrial cardiomyocites". BIO Web of Conferences 22 (2020): 01025. http://dx.doi.org/10.1051/bioconf/20202201025.
Pełny tekst źródłaLi, Jiuru, Alexandra Wiesinger, Lianne Fokkert, Bastiaan J. Boukens, Arie O. Verkerk, Vincent M. Christoffels, Gerard J. J. Boink i Harsha D. Devalla. "Molecular and electrophysiological evaluation of human cardiomyocyte subtypes to facilitate generation of composite cardiac models". Journal of Tissue Engineering 13 (styczeń 2022): 204173142211279. http://dx.doi.org/10.1177/20417314221127908.
Pełny tekst źródłaRajala, Kristiina, Mari Pekkanen-Mattila i Katriina Aalto-Setälä. "Cardiac Differentiation of Pluripotent Stem Cells". Stem Cells International 2011 (2011): 1–12. http://dx.doi.org/10.4061/2011/383709.
Pełny tekst źródłaWells, Simon P., Helen M. Waddell, Choon Boon Sim, Shiang Y. Lim, Gabriel B. Bernasochi, Davor Pavlovic, Paulus Kirchhof, Enzo R. Porrello, Lea M. D. Delbridge i James R. Bell. "Cardiomyocyte functional screening: interrogating comparative electrophysiology of high-throughput model cell systems". American Journal of Physiology-Cell Physiology 317, nr 6 (1.12.2019): C1256—C1267. http://dx.doi.org/10.1152/ajpcell.00306.2019.
Pełny tekst źródłaHochman-Mendez, Camila, Dilza Balteiro Pereira de Campos, Rafael Serafim Pinto, Bernardo Jorge da Silva Mendes, Gustavo Miranda Rocha, Gustavo Monnerat, Gilberto Weissmuller i in. "Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix". Journal of Tissue Engineering 11 (styczeń 2020): 204173142092148. http://dx.doi.org/10.1177/2041731420921482.
Pełny tekst źródłaDobrev, Dobromir, i Ursula Ravens. "Remodeling of cardiomyocyte ion channels in human atrial fibrillation". Basic Research in Cardiology 98, nr 3 (maj 2003): 137–48. http://dx.doi.org/10.1007/s00395-003-0409-8.
Pełny tekst źródłaBaena-Montes, Jara M., Tony O’Halloran, Cormac Clarke, Kevin Donaghey, Eoghan Dunne, Martin O’Halloran i Leo R. Quinlan. "Electroporation Parameters for Human Cardiomyocyte Ablation In Vitro". Journal of Cardiovascular Development and Disease 9, nr 8 (28.07.2022): 240. http://dx.doi.org/10.3390/jcdd9080240.
Pełny tekst źródłaTsai, Su-Yi, Zaniar Ghazizadeh, Hou-Jun Wang, Sadaf Amin, Francis A. Ortega, Zohreh Sadat Badieyan, Zi-Ting Hsu i in. "A human embryonic stem cell reporter line for monitoring chemical-induced cardiotoxicity". Cardiovascular Research 116, nr 3 (7.06.2019): 658–70. http://dx.doi.org/10.1093/cvr/cvz148.
Pełny tekst źródłaEisenberg, Leonard M., Keerat Kaur, John M. Castillo, John G. Edwards i Carol A. Eisenberg. "Dexamethasone Treatment Preserves the Structure of Adult Cardiac Explants and Supports Their Long-Term Contractility In Vitro". International Journal of Translational Medicine 3, nr 3 (5.09.2023): 360–73. http://dx.doi.org/10.3390/ijtm3030025.
Pełny tekst źródłaMartin, Kendall E., i Joshua S. Waxman. "Atrial and Sinoatrial Node Development in the Zebrafish Heart". Journal of Cardiovascular Development and Disease 8, nr 2 (9.02.2021): 15. http://dx.doi.org/10.3390/jcdd8020015.
Pełny tekst źródłaLiu, Yang, Shuang Li, Zhanqun Gao, Shuangjia Li, Qingyun Tan, Yanmei Li, Dongwei Wang i Qingdong Wang. "Indoleamine 2,3-Dioxygenase 1 (IDO1) Promotes Cardiac Hypertrophy via a PI3K-AKT-mTOR-Dependent Mechanism". Cardiovascular Toxicology 21, nr 8 (21.05.2021): 655–68. http://dx.doi.org/10.1007/s12012-021-09657-y.
Pełny tekst źródłaZang, Rongjia, Qingyun Tan, Fanrong Zeng, Dongwei Wang, Shuang Yu i Qingdong Wang. "JMJD1A Represses the Development of Cardiomyocyte Hypertrophy by Regulating the Expression of Catalase". BioMed Research International 2020 (13.05.2020): 1–14. http://dx.doi.org/10.1155/2020/5081323.
Pełny tekst źródłavan Ouwerkerk, Antoinette F., Fernanda M. Bosada, Karel van Duijvenboden, Arjan C. Houweling, Koen T. Scholman, Vincent Wakker, Cornelis P. Allaart i in. "Patient-Specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction". Circulation 145, nr 8 (22.02.2022): 606–19. http://dx.doi.org/10.1161/circulationaha.121.054347.
Pełny tekst źródłaMadsen, Alexandra, Grit Höppner, Julia Krause, Marc N. Hirt, Sandra D. Laufer, Michaela Schweizer, Wilson Lek Wen Tan i in. "An Important Role for DNMT3A-Mediated DNA Methylation in Cardiomyocyte Metabolism and Contractility". Circulation 142, nr 16 (20.10.2020): 1562–78. http://dx.doi.org/10.1161/circulationaha.119.044444.
Pełny tekst źródłaLiu, Chuyu, i Ning-Yi Shao. "The Differences in the Developmental Stages of the Cardiomyocytes and Endothelial Cells in Human and Mouse Embryos at the Single-Cell Level". International Journal of Molecular Sciences 25, nr 6 (13.03.2024): 3240. http://dx.doi.org/10.3390/ijms25063240.
Pełny tekst źródłaWang, Xiaoyu, Susan V. McLennan, Terri J. Allen, Tatiana Tsoutsman, Christopher Semsarian i Stephen M. Twigg. "Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor". American Journal of Physiology-Cell Physiology 297, nr 6 (grudzień 2009): C1490—C1500. http://dx.doi.org/10.1152/ajpcell.00049.2009.
Pełny tekst źródłaAbi-Gerges, Najah, Paul E. Miller i Andre Ghetti. "Human Heart Cardiomyocytes in Drug Discovery and Research: New Opportunities in Translational Sciences". Current Pharmaceutical Biotechnology 21, nr 9 (9.06.2020): 787–806. http://dx.doi.org/10.2174/1389201021666191210142023.
Pełny tekst źródłaDuelen, Robin, Guillaume Gilbert, Abdulsamie Patel, Nathalie de Schaetzen, Liesbeth De Waele, Llewelyn Roderick, Karin R. Sipido i in. "Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells". Stem Cells International 2017 (2017): 1–17. http://dx.doi.org/10.1155/2017/4651238.
Pełny tekst źródłaLavall, Daniel, Pia Schuster, Nadine Jacobs, Andrey Kazakov, Michael Böhm i Ulrich Laufs. "Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling". Journal of Biological Chemistry 292, nr 18 (20.03.2017): 7542–53. http://dx.doi.org/10.1074/jbc.m116.764449.
Pełny tekst źródłaÇubukçuoğlu Deniz, Günseli, Serkan Durdu, Yeşim Doğan, Esra Erdemli, Hilal Özdağ i Ahmet Ruchan Akar. "Molecular Signatures of Human Chronic Atrial Fibrillation in Primary Mitral Regurgitation". Cardiovascular Therapeutics 2021 (15.10.2021): 1–12. http://dx.doi.org/10.1155/2021/5516185.
Pełny tekst źródłaGoruppi, Sandro, Richard D. Patten, Thomas Force i John M. Kyriakis. "Helix-Loop-Helix Protein p8, a Transcriptional Regulator Required for Cardiomyocyte Hypertrophy and Cardiac Fibroblast Matrix Metalloprotease Induction". Molecular and Cellular Biology 27, nr 3 (20.11.2006): 993–1006. http://dx.doi.org/10.1128/mcb.00996-06.
Pełny tekst źródłaMoulin, Sophie, Amandine Thomas, Stefan Wagner, Michael Arzt, Hervé Dubouchaud, Frédéric Lamarche, Sophie Bouyon i in. "Intermittent Hypoxia-Induced Cardiomyocyte Death Is Mediated by HIF-1 Dependent MAM Disruption". Antioxidants 11, nr 8 (27.07.2022): 1462. http://dx.doi.org/10.3390/antiox11081462.
Pełny tekst źródłaMazhar, Fazeelat, Chiara Bartolucci, Francesco Regazzoni, Michelangelo Paci, Luca Dedè, Alfio Quarteroni, Cristiana Corsi i Stefano Severi. "A detailed mathematical model of the human atrial cardiomyocyte: Integration of electrophysiology and cardiomechanics". Vascular Pharmacology 155 (czerwiec 2024): 107330. http://dx.doi.org/10.1016/j.vph.2024.107330.
Pełny tekst źródłaRagulya, M. R., L. P. Goralskyi, I. M. Sokulskyi i N. L. Kolesnik. "Morphometric parameters of the heart of domestic sheep Ovis aries L., 1758". Ukrainian Journal of Veterinary and Agricultural Sciences 7, nr 1 (26.03.2024): 94–101. http://dx.doi.org/10.32718/ujvas7-1.15.
Pełny tekst źródłaKuwana, Masataka, Hiroaki Kodama, Yuka Okazaki, Takashi Satoh, Takafumi Inoue, Yutaka Kawakami i Yasuo Ikeda. "Multi-Lineage Potential of Human Monocyte-Derived Mesenchymal Progenitors (MOMPs)." Blood 104, nr 11 (16.11.2004): 3595. http://dx.doi.org/10.1182/blood.v104.11.3595.3595.
Pełny tekst źródłaSutanto, Henry. "Individual Contributions of Cardiac Ion Channels on Atrial Repolarization and Reentrant Waves: A Multiscale In-Silico Study". Journal of Cardiovascular Development and Disease 9, nr 1 (14.01.2022): 28. http://dx.doi.org/10.3390/jcdd9010028.
Pełny tekst źródłaWei, Chi-Ming, Margarita Bracamonte, Shi-Wen Jiang, Richard C. Daly, Christopher G. A. McGregor, Shaobo Zhang i Charles Y. F. Young. "Localization of endothelial nitric oxide synthase in the normal and failing human atrial myocardium". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11.08.1996): 786–87. http://dx.doi.org/10.1017/s0424820100166397.
Pełny tekst źródłaS. Ramos, Kennedy, Lisa Pool, Mathijs S. van Schie, Leonoor F. J. M. Wijdeveld, Willemijn F. B. van der Does, Luciënne Baks, H. M. Danish Sultan i in. "Degree of Fibrosis in Human Atrial Tissue Is Not the Hallmark Driving AF". Cells 11, nr 3 (26.01.2022): 427. http://dx.doi.org/10.3390/cells11030427.
Pełny tekst źródłaGodoy-Marín, Héctor, Verónica Jiménez-Sábado, Carmen Tarifa, Antonino Ginel, Joana Larupa Dos Santos, Bo Hjorth Bentzen, Leif Hove-Madsen i Francisco Ciruela. "Increased Density of Endogenous Adenosine A2A Receptors in Atrial Fibrillation: From Cellular and Porcine Models to Human Patients". International Journal of Molecular Sciences 24, nr 4 (11.02.2023): 3668. http://dx.doi.org/10.3390/ijms24043668.
Pełny tekst źródłaAnderson, Ethan J., Evelio Rodriguez, Curtis A. Anderson, Kathleen Thayne, W. Randolph Chitwood i Alan P. Kypson. "Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways". American Journal of Physiology-Heart and Circulatory Physiology 300, nr 1 (styczeń 2011): H118—H124. http://dx.doi.org/10.1152/ajpheart.00932.2010.
Pełny tekst źródłaAmin, Mohamed, Yoshihiro Kushida, Shohei Wakao, Masaaki Kitada, Kazuki Tatsumi i Mari Dezawa. "Cardiotrophic Growth Factor–Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype". Cell Transplantation 27, nr 2 (luty 2018): 285–98. http://dx.doi.org/10.1177/0963689717721514.
Pełny tekst źródłaIvashchenko, Christine Y., Gordon C. Pipes, Irina M. Lozinskaya, Zuojun Lin, Xu Xiaoping, Saul Needle, Eugene T. Grygielko i in. "Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype". American Journal of Physiology-Heart and Circulatory Physiology 305, nr 6 (15.09.2013): H913—H922. http://dx.doi.org/10.1152/ajpheart.00819.2012.
Pełny tekst źródłaHan, Wei, Songbin Fu, Na Wei, Baodong Xie, Weimin Li, Shusen Yang, Yue Li, Zijun Liang i Hong Huo. "Nitric oxide overproduction derived from inducible nitric oxide synthase increases cardiomyocyte apoptosis in human atrial fibrillation". International Journal of Cardiology 130, nr 2 (listopad 2008): 165–73. http://dx.doi.org/10.1016/j.ijcard.2008.02.026.
Pełny tekst źródłaZhao, Guo-Jun, Chang-Ling Zhao, Shan Ouyang, Ke-Qiong Deng, Lihua Zhu, Augusto C. Montezano, Changjiang Zhang i in. "Ca 2+ -Dependent NOX5 (NADPH Oxidase 5) Exaggerates Cardiac Hypertrophy Through Reactive Oxygen Species Production". Hypertension 76, nr 3 (wrzesień 2020): 827–38. http://dx.doi.org/10.1161/hypertensionaha.120.15558.
Pełny tekst źródłaRicher, Romain, Sandrine Lemoine, Jean-Luc Hanouz, Benoît Bernay, Marie Nowoczyn, Stéphane Allouche i Laurent Coulbault. "0485 : Subsarcolemmal and interfibrillar mitochondria in human atrial cardiomyocyte: an enzymatic and proteomic study in diabetic patients". Archives of Cardiovascular Diseases Supplements 8, nr 3 (kwiecień 2016): 208. http://dx.doi.org/10.1016/s1878-6480(16)30377-9.
Pełny tekst źródłaGündel, Daniel, Thu Hang Lai, Sladjana Dukic-Stefanovic, Rodrigo Teodoro, Winnie Deuther-Conrad, Magali Toussaint, Klaus Kopka i in. "Non-Invasive Assessment of Locally Overexpressed Human Adenosine 2A Receptors in the Heart of Transgenic Mice". International Journal of Molecular Sciences 23, nr 3 (18.01.2022): 1025. http://dx.doi.org/10.3390/ijms23031025.
Pełny tekst źródłaNakano, Austin, Yasuhiro Nakashima, Diana A. Yanez, Marlin Touma, Haruko Nakano, Artur Jarodzewicz, Maria C. Jordan, Matteo Pellegrini, Kenneth P. Roos i Kenneth P. Roos. "Abstract 13: Nkx2-5-notch Signaling Axis Regulates The Proliferation Of The Atrial Myocytes And Conduction System". Circulation Research 115, suppl_1 (18.07.2014). http://dx.doi.org/10.1161/res.115.suppl_1.13.
Pełny tekst źródłaGuo, Huixin, Chengwen Hang, Bowen Lin, Zheyi Lin, Hui Xiong, Mingshuai Zhang, Renhong Lu i in. "HAND factors regulate cardiac lineage commitment and differentiation from human pluripotent stem cells". Stem Cell Research & Therapy 15, nr 1 (5.02.2024). http://dx.doi.org/10.1186/s13287-024-03649-9.
Pełny tekst źródłaQuaranta, Roberto, Jakob Fell, Frank Rühle, Jyoti Rao, Ilaria Piccini, Marcos J. Araúzo-Bravo, Arie O. Verkerk, Monika Stoll i Boris Greber. "Revised roles of ISL1 in a hES cell-based model of human heart chamber specification". eLife 7 (16.01.2018). http://dx.doi.org/10.7554/elife.31706.
Pełny tekst źródłaChurko, Jared, Barbara Treutlein, Priyanka Garg, Meenakshi Venkatasubramanian, Haodi Wu, Shih-Yu Chen, Wen-Yi Chen i in. "Abstract 13841: Transcriptomic Signatures of Atrial- And Ventricular-like Human Induced Pluripotent Stem Cell Derived Cardiomyocytes". Circulation 134, suppl_1 (11.11.2016). http://dx.doi.org/10.1161/circ.134.suppl_1.13841.
Pełny tekst źródłaE Molina, C., L. Sommerfeld, T. Zeller, J. Obergassel, H. Wieboldt, L. Conradi, H. Reichenspurner, V. O. Nikolaev, P. Kirchhof i L. Fabritz. "From cells to circulating biomarker: BMP10 is a myocyte-secreted peptide with potential to detect atrial fibrillation". European Heart Journal 44, Supplement_2 (listopad 2023). http://dx.doi.org/10.1093/eurheartj/ehad655.3140.
Pełny tekst źródłaYe, Shiqiao, Cankun Wang, Zhaohui Xu, Hui Lin, Xiaoping Wan, Yang Yu, Subhodip Adhicary i in. "Impaired Human Cardiac Cell Development due to NOTCH1 Deficiency". Circulation Research, 30.12.2022. http://dx.doi.org/10.1161/circresaha.122.321398.
Pełny tekst źródłaBroman, Michael T., Rangarajan D. Nadadur, Carlos Perez-Cervantes, Ozanna Burnicka-Turek, Sonja Lazarevic, Anna Gams, Brigitte Laforest i in. "A Genomic Link From Heart Failure to Atrial Fibrillation Risk: FOG2 Modulates a TBX5/GATA4-Dependent Atrial Gene Regulatory Network". Circulation, 8.01.2024. http://dx.doi.org/10.1161/circulationaha.123.066804.
Pełny tekst źródłaHendrickson, Troy, William Perez, Abigail Giese i Francisco Altamirano. "Abstract P1088: Polycystin-1 Protects Against Experimental Atrial Fibrillation". Circulation Research 131, Suppl_1 (5.08.2022). http://dx.doi.org/10.1161/res.131.suppl_1.p1088.
Pełny tekst źródłaDai, Wenli, Brigitte Laforest, Leonid Tyan, Kaitlyn M. Shen, Rangarajan D. Nadadur, Francisco J. Alvarado, Stefan R. Mazurek i in. "A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice". eLife 8 (21.03.2019). http://dx.doi.org/10.7554/elife.41814.
Pełny tekst źródłaMunro, Michelle L., Isabelle van Hout, Hamish M. Aitken-Buck, Ramanen Sugunesegran, Krishna Bhagwat, Philip J. Davis, Regis R. Lamberts, Sean Coffey, Christian Soeller i Peter P. Jones. "Human Atrial Fibrillation Is Not Associated With Remodeling of Ryanodine Receptor Clusters". Frontiers in Cell and Developmental Biology 9 (25.02.2021). http://dx.doi.org/10.3389/fcell.2021.633704.
Pełny tekst źródłaThorpe, Jordan, Matthew D. Perry, Osvaldo Contreras, Emily Hurley, George Parker, Richard P. Harvey, Adam P. Hill i Jamie I. Vandenberg. "Development of a robust induced pluripotent stem cell atrial cardiomyocyte differentiation protocol to model atrial arrhythmia". Stem Cell Research & Therapy 14, nr 1 (27.07.2023). http://dx.doi.org/10.1186/s13287-023-03405-5.
Pełny tekst źródła