Artykuły w czasopismach na temat „HTF TUBE WITH FINS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „HTF TUBE WITH FINS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Senthil, Ramalingam, Aditya Patel, Rohan Rao i Sahil Ganeriwal. "Melting Behavior of Phase Change Material in a Solar Vertical Thermal Energy Storage with Variable Length Fins added on the Heat Transfer Tube Surfaces". International Journal of Renewable Energy Development 9, nr 3 (25.06.2020): 361–67. http://dx.doi.org/10.14710/ijred.2020.29879.
Pełny tekst źródłaSenthil, Ramalingam. "Effect of uniform and variable fin height on charging and discharging of phase change material in a horizontal cylindrical thermal storage". Thermal Science 23, nr 3 Part B (2019): 1981–88. http://dx.doi.org/10.2298/tsci170709239s.
Pełny tekst źródłaTorbarina, Fran, Kristian Lenic i Anica Trp. "Computational Model of Shell and Finned Tube Latent Thermal Energy Storage Developed as a New TRNSYS Type". Energies 15, nr 7 (25.03.2022): 2434. http://dx.doi.org/10.3390/en15072434.
Pełny tekst źródłaAkarsh, A., i Sumer Dirbude. "Effect of HTF flow direction, mass flow rate and fins on melting and solidification in a latent-heat-based thermal energy storage device". Journal of Physics: Conference Series 2054, nr 1 (1.10.2021): 012049. http://dx.doi.org/10.1088/1742-6596/2054/1/012049.
Pełny tekst źródłaYu, Meng, Xiaowei Sun, Wenjuan Su, Defeng Li, Jun Shen, Xuejun Zhang i Long Jiang. "Investigation on the Melting Performance of a Phase Change Material Based on a Shell-and-Tube Thermal Energy Storage Unit with a Rectangular Fin Configuration". Energies 15, nr 21 (3.11.2022): 8200. http://dx.doi.org/10.3390/en15218200.
Pełny tekst źródłaSun, Xinguo, Hayder I. Mohammed, Mohammadreza Ebrahimnataj Tiji, Jasim M. Mahdi, Hasan Sh Majdi, Zixiong Wang, Pouyan Talebizadehsardari i Wahiba Yaïci. "Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements". Nanomaterials 11, nr 10 (9.10.2021): 2647. http://dx.doi.org/10.3390/nano11102647.
Pełny tekst źródłaCieśliński, Janusz T., i Maciej Fabrykiewicz. "Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review". Energies 16, nr 2 (13.01.2023): 936. http://dx.doi.org/10.3390/en16020936.
Pełny tekst źródłaPagkalos, Christos, Michalis Gr Vrachopoulos, John Konstantaras i Kostas Lymperis. "Comparing water and paraffin PCM as storage mediums for thermal energy storage applications". E3S Web of Conferences 116 (2019): 00057. http://dx.doi.org/10.1051/e3sconf/201911600057.
Pełny tekst źródłaSunden, Bengt Ake, Zan Wu i Dan Huang. "Comparison of heat transfer characteristics of aviation kerosene flowing in smooth and enhanced mini tubes at supercritical pressures". International Journal of Numerical Methods for Heat & Fluid Flow 26, nr 3/4 (3.05.2016): 1289–308. http://dx.doi.org/10.1108/hff-12-2015-0538.
Pełny tekst źródłaDhaou, Mohamed Houcine, Sofiene Mellouli, Faisal Alresheedi i Yassine El-Ghoul. "Numerical Assessment of an Innovative Design of an Evacuated Tube Solar Collector Incorporated with PCM Embedded Metal Foam/Plate Fins". Sustainability 13, nr 19 (24.09.2021): 10632. http://dx.doi.org/10.3390/su131910632.
Pełny tekst źródłaNajim, Farqad T., Abdullah Bahlekeh, Hayder I. Mohammed, Anmar Dulaimi, Azher M. Abed, Raed Khalid Ibrahem, Fadhil Abbas Al-Qrimli, Mustafa Z. Mahmoud, Jan Awrejcewicz i Witold Pawłowski. "Evaluation of Melting Mechanism and Natural Convection Effect in a Triplex Tube Heat Storage System with a Novel Fin Arrangement". Sustainability 14, nr 17 (2.09.2022): 10982. http://dx.doi.org/10.3390/su141710982.
Pełny tekst źródłaZaib, Aurang, Abdur Rehman Mazhar, Shahid Aziz, Tariq Talha i Dong-Won Jung. "Heat Transfer Augmentation Using Duplex and Triplex Tube Phase Change Material (PCM) Heat Exchanger Configurations". Energies 16, nr 10 (11.05.2023): 4037. http://dx.doi.org/10.3390/en16104037.
Pełny tekst źródłaKoukou, Maria K., Michail Gr Vrachopoulos, George Dogkas, Christos Pagkalos, Kostas Lymperis, Luis Coelho i Amandio Rebola. "Testing the performance of a prototype thermal energy storage tank working with organic phase change material for space heating application conditions". E3S Web of Conferences 116 (2019): 00038. http://dx.doi.org/10.1051/e3sconf/201911600038.
Pełny tekst źródłaMohapatra, Kailash, i Dipti Prasad Mishra. "Effect of fin and tube configuration on heat transfer of an internally finned tube". International Journal of Numerical Methods for Heat & Fluid Flow 25, nr 8 (2.11.2015): 1978–99. http://dx.doi.org/10.1108/hff-05-2014-0129.
Pełny tekst źródłaHashizume, Kenichi, Takahiro Matsue i Yoshiaki Sueoka. "Effect of fins on forced convection heat transfer around a tube". Heat Transfer?Asian Research 32, nr 5 (12.06.2003): 445–54. http://dx.doi.org/10.1002/htj.10098.
Pełny tekst źródłaJalil, Ehsan, i Koorosh Goudarzi. "Heat transfer enhancement of finned‐tube heat exchanger using nozzle‐ and diffuser‐shaped fins instead of straight fins". Heat Transfer 51, nr 2 (13.10.2021): 1336–57. http://dx.doi.org/10.1002/htj.22354.
Pełny tekst źródłaHashizume, Kenichi, i Yoshiaki Sueoka. "Effect of fins on forced convection heat transfer around a tube in an aligned-arranged tube bundle". Heat Transfer—Asian Research 34, nr 8 (grudzień 2005): 555–63. http://dx.doi.org/10.1002/htj.20091.
Pełny tekst źródłaAbbood, Sahar A., i Bengt Ake Sunden. "Numerical study of turbulent forced convection in a finned tube with and without CuO nano fluid". International Journal of Numerical Methods for Heat & Fluid Flow 26, nr 7 (5.09.2016): 2252–70. http://dx.doi.org/10.1108/hff-04-2015-0146.
Pełny tekst źródłaWu, Feng, Mei Lin, Lin Tian, Qiuwang Wang i Laiqin Luo. "Convective heat transfer and pressure drop of a tube with internal longitudinal fins". Heat Transfer—Asian Research 36, nr 2 (2007): 57–65. http://dx.doi.org/10.1002/htj.20147.
Pełny tekst źródłaShivanian, Elyas, i Antonio Campo. "Exact, analytical heat transfer from longitudinal radiating fins of rectangular profile in a tube/fin ensemble". Heat Transfer 50, nr 5 (26.02.2021): 4843–54. http://dx.doi.org/10.1002/htj.22105.
Pełny tekst źródłaKawaguchi, Kiyoshi, Kenichi Okui i Takaharu Kashi. "The heat transfer and pressure drop characteristics of finned tube banks in forced convection (comparison of the pressure drop characteristics of spiral fins and serrated fins)". Heat Transfer?Asian Research 33, nr 7 (2004): 431–44. http://dx.doi.org/10.1002/htj.20030.
Pełny tekst źródłaMahdavi, Mostafa, i Mahmood Yaghoubi. "Experimental study of natural frost formation over a horizontal tube with annular compact fins under natural convection". Heat Transfer-Asian Research 41, nr 1 (2.12.2011): 84–98. http://dx.doi.org/10.1002/htj.20397.
Pełny tekst źródłaPayambarpour, Seyed Abdolkarim, Mohammad Alhuyi Nazari, Mohammad Hossein Ahmadi i Ali J. Chamkha. "Effect of partially wet-surface condition on the performance of fin-tube heat exchanger". International Journal of Numerical Methods for Heat & Fluid Flow 29, nr 10 (7.10.2019): 3938–58. http://dx.doi.org/10.1108/hff-07-2018-0362.
Pełny tekst źródłaPatel, Jay R., i Manish K. Rathod. "Thermal performance enhancement of melting and solidification process of phase-change material in triplex tube heat exchanger using longitudinal fins". Heat Transfer-Asian Research 48, nr 2 (3.12.2018): 483–501. http://dx.doi.org/10.1002/htj.21372.
Pełny tekst źródłaHosseini, Mohammad M., i Asghar B. Rahimi. "Heat transfer enhancement in solidification process by change of fins arrangements in a heat exchanger containing phase-change materials". International Journal of Numerical Methods for Heat & Fluid Flow 29, nr 5 (7.05.2019): 1741–55. http://dx.doi.org/10.1108/hff-06-2018-0333.
Pełny tekst źródłaShank, Kyle, Jessica Bernat, Ethan Regal, Joel Leise, Xiaoxu Ji i Saeed Tiari. "Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins". Sustainability 14, nr 14 (21.07.2022): 8920. http://dx.doi.org/10.3390/su14148920.
Pełny tekst źródłaMotevali, Ali, Mohammadreza Hasandust Rostami, Gholamhassan Najafi i Wei-Mon Yan. "Evaluation and Improvement of PCM Melting in Double Tube Heat Exchangers Using Different Combinations of Nanoparticles and PCM (The Case of Renewable Energy Systems)". Sustainability 13, nr 19 (26.09.2021): 10675. http://dx.doi.org/10.3390/su131910675.
Pełny tekst źródłaJu, Yongfeng, Roohollah Babaei-Mahani, Raed Khalid Ibrahem, Shoira Khakberdieva, Yasir Salam Karim, Ahmed N. Abdalla, Abdullah Mohamed, Mustafa Z. Mahmoud i Hafiz Muhammad Ali. "Discharge Enhancement in a Triple-Pipe Heat Exchanger Filled with Phase Change Material". Nanomaterials 12, nr 9 (9.05.2022): 1605. http://dx.doi.org/10.3390/nano12091605.
Pełny tekst źródłaHavaldar, Sanjay N., Harsh V. Malapur, Kaustubh G. Kulkarni i Gary A. Anderson. "Numerical Investigation of Concentrated Solar Central Billboard with Hexagonal Tubes." IOP Conference Series: Earth and Environmental Science 1084, nr 1 (1.10.2022): 012021. http://dx.doi.org/10.1088/1755-1315/1084/1/012021.
Pełny tekst źródłaLi, Min, Jasim M. Mahdi, Hayder I. Mohammed, Dmitry Olegovich Bokov, Mustafa Z. Mahmoud, Ali Naghizadeh, Pouyan Talebizadehsardari i Wahiba Yaïci. "Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes". Nanomaterials 11, nr 12 (26.11.2021): 3211. http://dx.doi.org/10.3390/nano11123211.
Pełny tekst źródłaBouali, Belkacem, i Hanane-Maria Regue. "Contribution to the Parametric Study of the Performance of A Parabolic Trough Collector". E3S Web of Conferences 321 (2021): 02016. http://dx.doi.org/10.1051/e3sconf/202132102016.
Pełny tekst źródłaKis Agustin, Helena Carolina, Ika Dewi Wijayanti i Rakhmat Satrio Wibowo. "Morphology of Crown Tube Austenitic Stainless Steel TP316 HTF Failure". Applied Mechanics and Materials 836 (czerwiec 2016): 67–71. http://dx.doi.org/10.4028/www.scientific.net/amm.836.67.
Pełny tekst źródłaFadl, Mohamed, i Philip Eames. "Thermal Performance Analysis of the Charging/Discharging Process of a Shell and Horizontally Oriented Multi-Tube Latent Heat Storage System". Energies 13, nr 23 (25.11.2020): 6193. http://dx.doi.org/10.3390/en13236193.
Pełny tekst źródłaStanciu, Dorin, Camelia Stanciu, Valentin Apostol i Horatiu Pop. "Numerical simulation of a phase change material melting process". E3S Web of Conferences 112 (2019): 01010. http://dx.doi.org/10.1051/e3sconf/201911201010.
Pełny tekst źródłaPakalka, Saulius, Kęstutis Valančius i Matas Damonskis. "ŠILUMNEŠIO DEBITO ĮTAKOS FAZINIO VIRSMO MEDŽIAGOS VEIKIMUI TYRIMAS / INVESTIGATION OF THE INFLUENCE OF MASS FLOW RATE ON PHASE CHANGE MATERIAL BEHAVIOUR". Mokslas - Lietuvos ateitis 11 (10.10.2019): 1–5. http://dx.doi.org/10.3846/mla.2019.10578.
Pełny tekst źródłaNagappan, Beemkumar, Karthikeyan Alagu, Yuvarajan Devarajan i Dinesh Babu Munuswamy. "Energy and Exergy Analysis of Multi-Temperature PCMs Employed in a Latent Heat Storage System and Parabolic Trough Collector". Journal of Non-Equilibrium Thermodynamics 43, nr 3 (26.07.2018): 211–20. http://dx.doi.org/10.1515/jnet-2017-0066.
Pełny tekst źródłaAnggara, Fajar, Henry Carles i Pathur Razi Ansyah. "STUDI NUMERIK: PENGARUH DEBIT INLET TERHADAP KARAKTERISTIK PELELEHAN PARAFFIN WAX PADA TABUNG SILINDER". Scientific Journal of Mechanical Engineering Kinematika 4, nr 1 (13.06.2019): 15–26. http://dx.doi.org/10.20527/sjmekinematika.v4i1.48.
Pełny tekst źródłaPitambar Subhash Gadhave, Chandrakant Laxman Prabhune, Hanumant Pandurang Jagtap i Parmeshwar Pandurang Ritapure. "Investigative Study of Solidification and Melting of Stearic Acid in Triplex Pipe with Perforated Fin Surface". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 98, nr 1 (19.09.2022): 125–36. http://dx.doi.org/10.37934/arfmts.98.1.125136.
Pełny tekst źródłaShehab, Saad Najeeb. "Natural-Convection Phenomenon from a Finned Heated Vertical Tube: Experimental Analysis". Al-Khwarizmi Engineering Journal 13, nr 4 (20.03.2019): 30–40. http://dx.doi.org/10.22153/kej.2017.05.004.
Pełny tekst źródłaRamachandran, S. "Experimental Analysis of Storage of Solar Energy in Phase Change Materials Encapsulated in Copper Cylinders". Applied Mechanics and Materials 766-767 (czerwiec 2015): 445–50. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.445.
Pełny tekst źródłaMao, Qianjun, Ning Liu i Li Peng. "Numerical Investigations on Charging/Discharging Performance of a Novel Truncated Cone Thermal Energy Storage Tank on a Concentrated Solar Power System". International Journal of Photoenergy 2019 (27.01.2019): 1–17. http://dx.doi.org/10.1155/2019/1609234.
Pełny tekst źródłaKumar, Kamuju Naveen, Akanksha Maurya i Deepak Sharma. "Performance Investigation of Cylindrical Cavity Receiver Using Roughened Surfaces". IOP Conference Series: Materials Science and Engineering 1259, nr 1 (1.10.2022): 012028. http://dx.doi.org/10.1088/1757-899x/1259/1/012028.
Pełny tekst źródłaGuo, Zhanjun, Wu Zhou, Sen Liu, Zhangyang Kang i Rufei Tan. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System". Sustainability 15, nr 17 (30.08.2023): 13062. http://dx.doi.org/10.3390/su151713062.
Pełny tekst źródłaGnanavel, C., R. Saravanan i M. Chandrasekaran. "Numerical Exploration of Influence of Phase Changing Material in Heat Transfer Augmentation in the Double Tube Heat Exchanger". International Journal of Engineering & Technology 7, nr 3.27 (15.08.2018): 162. http://dx.doi.org/10.14419/ijet.v7i3.27.17751.
Pełny tekst źródłaBošnjaković, Mladen, i Simon Muhič. "Numerical Analysis of Tube Heat Exchanger with Perforated Star-Shaped Fins". Fluids 5, nr 4 (13.12.2020): 242. http://dx.doi.org/10.3390/fluids5040242.
Pełny tekst źródłaLong, Jian You. "Simulation Investigation for Heat Transfer in Fin-Tube Thermal Storage Unit with Phase Change Material". Advanced Materials Research 168-170 (grudzień 2010): 895–99. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.895.
Pełny tekst źródłaHussien, Kamil Abdul. "Experimental Investigation of Heat Transfer Enhancement by Using Different Number of Fins in Circular Tube". Wasit Journal of Engineering Sciences 6, nr 3 (10.12.2018): 1–12. http://dx.doi.org/10.31185/ejuow.vol6.iss3.99.
Pełny tekst źródłaGuerraiche, D., K. Guerraiche, Z. Driss, A. Chibani, S. Merouani i C. Bougriou. "Heat Transfer Enhancement in a Receiver Tube of Solar Collector Using Various Materials and Nanofluids". Engineering, Technology & Applied Science Research 12, nr 5 (2.10.2022): 9282–94. http://dx.doi.org/10.48084/etasr.5214.
Pełny tekst źródłaSun, Xinguo, Jasim M. Mahdi, Hayder I. Mohammed, Hasan Sh Majdi, Wang Zixiong i Pouyan Talebizadehsardari. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins". Energies 14, nr 21 (1.11.2021): 7179. http://dx.doi.org/10.3390/en14217179.
Pełny tekst źródłaBošnjaković, Mladen, i Simon Muhič. "Numerical Analysis of Tube Heat Exchanger with Trimmed Star-Shaped Fins". Applied Sciences 12, nr 10 (11.05.2022): 4857. http://dx.doi.org/10.3390/app12104857.
Pełny tekst źródła