Artykuły w czasopismach na temat „Hsp31”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hsp31”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Rasouly, Aviram, Yotam Shenhar i Eliora Z. Ron. "Thermoregulation of Escherichia coli hchA Transcript Stability". Journal of Bacteriology 189, nr 15 (25.05.2007): 5779–81. http://dx.doi.org/10.1128/jb.00453-07.
Pełny tekst źródłaMujacic, Mirna, i Fran�ois Baneyx. "Chaperone Hsp31 Contributes to Acid Resistance in Stationary-Phase Escherichia coli". Applied and Environmental Microbiology 73, nr 3 (8.12.2006): 1014–18. http://dx.doi.org/10.1128/aem.02429-06.
Pełny tekst źródłaSubedi, Krishna P., Dongwook Choi, Insook Kim, Bumchan Min i Chankyu Park. "Hsp31 of Escherichia coli K-12 is glyoxalase III". Molecular Microbiology 81, nr 4 (6.07.2011): 926–36. http://dx.doi.org/10.1111/j.1365-2958.2011.07736.x.
Pełny tekst źródłaHansberg, Wilhelm, Teresa Nava-Ramírez, Pablo Rangel-Silva, Adelaida Díaz-Vilchis i Aydé Mendoza-Oliva. "Large-Size Subunit Catalases Are Chimeric Proteins: A H2O2 Selecting Domain with Catalase Activity Fused to a Hsp31-Derived Domain Conferring Protein Stability and Chaperone Activity". Antioxidants 11, nr 5 (17.05.2022): 979. http://dx.doi.org/10.3390/antiox11050979.
Pełny tekst źródłaZhang, Kai, Kuikui Jiang, Ruoxi Hong, Fei Xu, Wen Xia, Ge Qin, Kaping Lee i in. "Identification and characterization of critical genes associated with tamoxifen resistance in breast cancer". PeerJ 8 (4.12.2020): e10468. http://dx.doi.org/10.7717/peerj.10468.
Pełny tekst źródłaKim, Jihong, Dongwook Choi, Chankyu Park i Kyoung-Seok Ryu. "Backbone resonance assignments of the Escherichia coli 62 kDa protein, Hsp31". Biomolecular NMR Assignments 11, nr 2 (3.03.2017): 159–63. http://dx.doi.org/10.1007/s12104-017-9739-6.
Pełny tekst źródłaKim, Jihong, Dongwook Choi, So-Young Cha, Young-Mee Oh, Eunha Hwang, Chankyu Park i Kyoung-Seok Ryu. "Zinc-mediated Reversible Multimerization of Hsp31 Enhances the Activity of Holding Chaperone". Journal of Molecular Biology 430, nr 12 (czerwiec 2018): 1760–72. http://dx.doi.org/10.1016/j.jmb.2018.04.029.
Pełny tekst źródłaChoi, Dongwook, Kyoung-Seok Ryu i Chankyu Park. "Structural alteration of Escherichia coli Hsp31 by thermal unfolding increases chaperone activity". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1834, nr 2 (luty 2013): 621–28. http://dx.doi.org/10.1016/j.bbapap.2012.11.006.
Pełny tekst źródłaHasim, Sahar, Nur Ahmad Hussin, Fadhel Alomar, Keshore R. Bidasee, Kenneth W. Nickerson i Mark A. Wilson. "A Glutathione-independent Glyoxalase of the DJ-1 Superfamily Plays an Important Role in Managing Metabolically Generated Methylglyoxal in Candida albicans". Journal of Biological Chemistry 289, nr 3 (3.12.2013): 1662–74. http://dx.doi.org/10.1074/jbc.m113.505784.
Pełny tekst źródłaNava-Ramírez, Teresa, Sammy Gutiérrez-Terrazas i Wilhelm Hansberg. "The Molecular Chaperone Mechanism of the C-Terminal Domain of Large-Size Subunit Catalases". Antioxidants 12, nr 4 (30.03.2023): 839. http://dx.doi.org/10.3390/antiox12040839.
Pełny tekst źródłaMujacic, Mirna, i Francois Baneyx. "Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31". Molecular Microbiology 60, nr 6 (czerwiec 2006): 1576–89. http://dx.doi.org/10.1111/j.1365-2958.2006.05207.x.
Pełny tekst źródłaTsai, Chai-jui, Kiran Aslam, Holli M. Drendel, Josephat M. Asiago, Kourtney M. Goode, Lake N. Paul, Jean-Christophe Rochet i Tony R. Hazbun. "Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process". Journal of Biological Chemistry 290, nr 41 (25.08.2015): 24816–34. http://dx.doi.org/10.1074/jbc.m115.678367.
Pełny tekst źródłaAslam, Kiran, Chai-jui Tsai i Tony R. Hazbun. "The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation". Prion 10, nr 6 (3.10.2016): 444–65. http://dx.doi.org/10.1080/19336896.2016.1234574.
Pełny tekst źródłaMihoub, Mouadh, Jad Abdallah, Brigitte Gontero, Julien Dairou i Gilbert Richarme. "The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal". Biochemical and Biophysical Research Communications 463, nr 4 (sierpień 2015): 1305–10. http://dx.doi.org/10.1016/j.bbrc.2015.06.111.
Pełny tekst źródłaKim, Jihong, Dongwook Choi, Chankyu Park i Kyoung-Seok Ryu. "Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31". Journal of the Korean Magnetic Resonance Society 19, nr 3 (20.12.2015): 112–18. http://dx.doi.org/10.6564/jkmrs.2015.19.3.112.
Pełny tekst źródłaSastry, M. S. R., Weibin Zhou i François Baneyx. "Integrity of N- and C-termini is important for E. coli Hsp31 chaperone activity". Protein Science 18, nr 7 (13.05.2009): 1439–47. http://dx.doi.org/10.1002/pro.158.
Pełny tekst źródłaAslam, Kiran, i Tony R. Hazbun. "Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity". Prion 10, nr 2 (3.03.2016): 103–11. http://dx.doi.org/10.1080/19336896.2016.1141858.
Pełny tekst źródłaGraille, Marc, Sophie Quevillon-Cheruel, Nicolas Leulliot, Cong-Zhao Zhou, Ines Li de La Sierra Gallay, Lilian Jacquamet, Jean-Luc Ferrer i in. "Crystal Structure of the YDR533c S. cerevisiae Protein, a Class II Member of the Hsp31 Family". Structure 12, nr 5 (maj 2004): 839–47. http://dx.doi.org/10.1016/j.str.2004.02.030.
Pełny tekst źródłaLee, Sun-Joo, So Jung Kim, In-Kwon Kim, Junsang Ko, Chang-Sook Jeong, Gyung-Hwa Kim, Chankyu Park i in. "Crystal Structures of Human DJ-1 and Escherichia coli Hsp31, Which Share an Evolutionarily Conserved Domain". Journal of Biological Chemistry 278, nr 45 (25.08.2003): 44552–59. http://dx.doi.org/10.1074/jbc.m304517200.
Pełny tekst źródłade Miguel, N., P. C. Echeverria i S. O. Angel. "Differential Subcellular Localization of Members of the Toxoplasma gondii Small Heat Shock Protein Family". Eukaryotic Cell 4, nr 12 (grudzień 2005): 1990–97. http://dx.doi.org/10.1128/ec.4.12.1990-1997.2005.
Pełny tekst źródłaDas, Samir, Sanghati Roy Chowdhury, Sanjay Dey i Udayaditya Sen. "Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity". PLOS ONE 12, nr 2 (24.02.2017): e0172629. http://dx.doi.org/10.1371/journal.pone.0172629.
Pełny tekst źródłaSastry, M. S. R., Konstantin Korotkov, Yan Brodsky i François Baneyx. "Hsp31, theEscherichia coli yedUGene Product, Is a Molecular Chaperone Whose Activity Is Inhibited by ATP at High Temperatures". Journal of Biological Chemistry 277, nr 48 (15.09.2002): 46026–34. http://dx.doi.org/10.1074/jbc.m205800200.
Pełny tekst źródłaPadilla, C. A., J. A. Bárcena, M. J. López-Grueso i R. Requejo-Aguilar. "The regulation of TORC1 pathway by the yeast chaperones Hsp31 is mediated by SFP1 and affects proteasomal activity". Biochimica et Biophysica Acta (BBA) - General Subjects 1863, nr 3 (marzec 2019): 534–46. http://dx.doi.org/10.1016/j.bbagen.2018.12.011.
Pełny tekst źródłaGraf, Paul C. F., Maria Martinez-Yamout, Stephen VanHaerents, Hauke Lilie, H. Jane Dyson i Ursula Jakob. "Activation of the Redox-regulated Chaperone Hsp33 by Domain Unfolding". Journal of Biological Chemistry 279, nr 19 (15.03.2004): 20529–38. http://dx.doi.org/10.1074/jbc.m401764200.
Pełny tekst źródłaQuigley, P. M., K. Korotkov, F. Baneyx i W. G. J. Hol. "The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad". Proceedings of the National Academy of Sciences 100, nr 6 (5.03.2003): 3137–42. http://dx.doi.org/10.1073/pnas.0530312100.
Pełny tekst źródłaAmm, Ingo, Derrick Norell i Dieter H. Wolf. "Absence of the Yeast Hsp31 Chaperones of the DJ-1 Superfamily Perturbs Cytoplasmic Protein Quality Control in Late Growth Phase". PLOS ONE 10, nr 10 (14.10.2015): e0140363. http://dx.doi.org/10.1371/journal.pone.0140363.
Pełny tekst źródłaCarlin, Aaron F., Sinem Beyhan, Jesús F. Peña, Jason E. Stajich, Suganya Viriyakosol, Joshua Fierer i Theo N. Kirkland. "Transcriptional Analysis of Coccidioides immitis Mycelia and Spherules by RNA Sequencing". Journal of Fungi 7, nr 5 (7.05.2021): 366. http://dx.doi.org/10.3390/jof7050366.
Pełny tekst źródłaHansberg, Wilhelm. "Monofunctional Heme-Catalases". Antioxidants 11, nr 11 (2.11.2022): 2173. http://dx.doi.org/10.3390/antiox11112173.
Pełny tekst źródłaBoudreault, Julien, Ni Wang, Gang Yan, Meiou Dai, Sophie Poulet, Girija Daliah i Jean-Jacques Lebrun. "Abstract 3938: In vivo genome-wide CRISPR screen in pancreatic ductal adenocarcinoma defines HSPE1 as a potential oncogene by acting through G2/M cell cycle arrest". Cancer Research 83, nr 7_Supplement (4.04.2023): 3938. http://dx.doi.org/10.1158/1538-7445.am2023-3938.
Pełny tekst źródłaGalai, Geut, Hila Ben-David, Liron Levin, Martin F. Orth, Thomas G. P. Grünewald, Shai Pilosof, Shimon Bershtein i Barak Rotblat. "Pan-Cancer Analysis of Mitochondria Chaperone-Client Co-Expression Reveals Chaperone Functional Partitioning". Cancers 12, nr 4 (30.03.2020): 825. http://dx.doi.org/10.3390/cancers12040825.
Pełny tekst źródłaScieglinska, Dorota, Zdzisław Krawczyk, Damian Robert Sojka i Agnieszka Gogler-Pigłowska. "Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes". Cell Stress and Chaperones 24, nr 6 (listopad 2019): 1027–44. http://dx.doi.org/10.1007/s12192-019-01044-5.
Pełny tekst źródłaBankapalli, Kondalarao, SreeDivya Saladi, Sahezeel S. Awadia, Arvind Vittal Goswami, Madhuja Samaddar i Patrick D'Silva. "Robust Glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI Family Member Protein, Is Critical for Oxidative Stress Resistance inSaccharomyces cerevisiae". Journal of Biological Chemistry 290, nr 44 (14.09.2015): 26491–507. http://dx.doi.org/10.1074/jbc.m115.673624.
Pełny tekst źródłaSeibert, Jacob T., Malavika K. Adur, Ronald B. Schultz, Porsha Q. Thomas, Zoe E. Kiefer, Aileen F. Keating, Lance H. Baumgard i Jason W. Ross. "Differentiating between the effects of heat stress and lipopolysaccharide on the porcine ovarian heat shock protein response1". Journal of Animal Science 97, nr 12 (29.11.2019): 4965–73. http://dx.doi.org/10.1093/jas/skz343.
Pełny tekst źródłaSastry, M. S. R., P. M. Quigley, W. G. J. Hol i F. Baneyx. "The linker-loop region of Escherichia coli chaperone Hsp31 functions as a gate that modulates high-affinity substrate binding at elevated temperatures". Proceedings of the National Academy of Sciences 101, nr 23 (1.06.2004): 8587–92. http://dx.doi.org/10.1073/pnas.0403033101.
Pełny tekst źródłaRicharme, Gilbert, Jad Abdallah, Nicolas Mathas, Valérie Gautier i Julien Dairou. "Further characterization of the Maillard deglycase DJ-1 and its prokaryotic homologs, deglycase 1/Hsp31, deglycase 2/YhbO, and deglycase 3/YajL". Biochemical and Biophysical Research Communications 503, nr 2 (wrzesień 2018): 703–9. http://dx.doi.org/10.1016/j.bbrc.2018.06.064.
Pełny tekst źródłaAndrade, Warne Pedro, Bryan Ôrtero Perez Gonçalves, Luciana Maria Silva i Agnaldo Lopes Dasilva Filho. "Upregulation of HSPB1 heat shock gene and ERCC1 gene on serous ovarian cancer cell line in HIPEC in vitro model." Journal of Clinical Oncology 39, nr 15_suppl (20.05.2021): e17559-e17559. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e17559.
Pełny tekst źródłaZaitsev, M. S., T. N. Kiseleva, K. V. Lugovkina, N. V. Balatskaya, E. V. Jani i K. E. Seliverstova. "Experimental assessment of the impact of high acoustic power ultrasound diagnostics on animal eyes". Russian Ophthalmological Journal 15, nr 3 (23.09.2022): 92–98. http://dx.doi.org/10.21516/2072-0076-2022-15-3-92-98.
Pełny tekst źródłaDavis, R. E., i M. L. King. "The developmental expression of the heat-shock response in Xenopus laevis". Development 105, nr 2 (1.02.1989): 213–22. http://dx.doi.org/10.1242/dev.105.2.213.
Pełny tekst źródłaAlabi, Mutiu A., Olugbenga O. Adebawo, Oluwole A. Daini, Stella B. Somiari i Richard I. Somiari. "HSPD1, HSPB1 and VDAC1 are Over-expressed in Invasive Ductal Carcinoma of the Breast". International Journal of Cancer Research 12, nr 2 (15.03.2016): 82–91. http://dx.doi.org/10.3923/ijcr.2016.82.91.
Pełny tekst źródłaMujacic, Mirna, Martin W. Bader i François Baneyx. "Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions". Molecular Microbiology 51, nr 3 (15.12.2003): 849–59. http://dx.doi.org/10.1046/j.1365-2958.2003.03871.x.
Pełny tekst źródłaRehman, Saif ur, Asif Nadeem, Maryam Javed, Faiz-ul Hassan, Xier Luo, Ruqayya Bint Khalid i Qingyou Liu. "Genomic Identification, Evolution and Sequence Analysis of the Heat-Shock Protein Gene Family in Buffalo". Genes 11, nr 11 (23.11.2020): 1388. http://dx.doi.org/10.3390/genes11111388.
Pełny tekst źródłaRen, Juanhui, Bo Ren, Qiuwen Zhang i Xiuqing Zheng. "A Novel Hybrid Extreme Learning Machine Approach Improved by K Nearest Neighbor Method and Fireworks Algorithm for Flood Forecasting in Medium and Small Watershed of Loess Region". Water 11, nr 9 (5.09.2019): 1848. http://dx.doi.org/10.3390/w11091848.
Pełny tekst źródłaLi, Junwei, Jiufu Wen, Ruiping Hu, Surui Pei, Ting Li, Binbin Shan, Honghui Huang i Changbo Zhu. "Transcriptome Responses to Different Environments in Intertidal Zones in the Peanut Worm Sipunculus nudus". Biology 12, nr 9 (29.08.2023): 1182. http://dx.doi.org/10.3390/biology12091182.
Pełny tekst źródłaChen, Keqin, Changmiao Hou, Lei Xu, Hanwu Peng, Chaogui He, Jing Liu, Guoqing Wang, Shaoshuai Huang i Xiehong Liu. "HSPB1 Regulates Autophagy and Apoptosis in Vascular Smooth Muscle Cells in Arteriosclerosis Obliterans". Cardiovascular Therapeutics 2022 (14.11.2022): 1–11. http://dx.doi.org/10.1155/2022/3889419.
Pełny tekst źródłaZhao, Sida, Bin Li, Yiyuan Chen, Chuzhong Li i Yazhuo Zhang. "Analysis of the Prognostic and Immunological Role of HSPB1 in Pituitary Adenoma: A Potential Target for Therapy". Medicina 59, nr 5 (5.05.2023): 885. http://dx.doi.org/10.3390/medicina59050885.
Pełny tekst źródłaCai, Qiaoyan, Jing Lin, Ling Zhang, Jiumao Lin, Lili Wang, Daxin Chen i Jun Peng. "Comparative proteomics—network analysis of proteins responsible for ursolic acid–induced cytotoxicity in colorectal cancer cells". Tumor Biology 39, nr 3 (marzec 2017): 101042831769501. http://dx.doi.org/10.1177/1010428317695015.
Pełny tekst źródłaWang, Yana, Jiali Liu, Qiuyue Kong, Hao Cheng, Fei Tu, Peng Yu, Ying Liu i in. "Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction". Cardiovascular Research 115, nr 1 (2.07.2018): 154–67. http://dx.doi.org/10.1093/cvr/cvy163.
Pełny tekst źródłaJundra, Nuntawat, Aksarakorn Kummasook i Monsicha Pongpom. "Expression of Heat Shock Protein 30 in Talaromyces marneffei during Phase Transition and in Response to Heat and Oxidative Stresses". Biomedical Sciences and Clinical Medicine 62, nr 2 (29.06.2023): 63–72. http://dx.doi.org/10.12982/bscm.2023.07.
Pełny tekst źródłaGibert, Benjamin, Stéphanie Simon, Valeriya Dimitrova, Chantal Diaz-Latoud i André-Patrick Arrigo. "Peptide aptamers: tools to negatively or positively modulate HSPB1(27) function". Philosophical Transactions of the Royal Society B: Biological Sciences 368, nr 1617 (5.05.2013): 20120075. http://dx.doi.org/10.1098/rstb.2012.0075.
Pełny tekst źródłaKovács, Árpád Ferenc, Nóra Fekete, Lilla Turiák, András Ács, László Kőhidai, Edit I. Buzás i Éva Pállinger. "Unravelling the Role of Trophoblastic-Derived Extracellular Vesicles in Regulatory T Cell Differentiation". International Journal of Molecular Sciences 20, nr 14 (14.07.2019): 3457. http://dx.doi.org/10.3390/ijms20143457.
Pełny tekst źródła