Gotowa bibliografia na temat „HSP18.5”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HSP18.5”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "HSP18.5"
Liu, Peng, Jundong Jia, Hanwen Wu, Zihan Song i Xi He. "Hsp from Lactobacillus plantarum Expression in Lactococcus lactis MG1363". BIO Web of Conferences 61 (2023): 01010. http://dx.doi.org/10.1051/bioconf/20236101010.
Pełny tekst źródłaKurre, Devanshu, i Kaza Suguna. "Network of Entamoeba histolytica HSP18.5 dimers formed by two overlapping [IV]‐X‐[IV] motifs". Proteins: Structure, Function, and Bioinformatics 89, nr 8 (8.04.2021): 1039–54. http://dx.doi.org/10.1002/prot.26081.
Pełny tekst źródłaKokke, Bas P. A., Michel R. Leroux, E. Peter M. Candido, Wilbert C. Boelens i Wilfried W. de Jong. "Caenorhabditis eleganssmall heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity". FEBS Letters 433, nr 3 (21.08.1998): 228–32. http://dx.doi.org/10.1016/s0014-5793(98)00917-x.
Pełny tekst źródłaOtani, Mieko, Toshiyuki Ueki, Satoshi Kozuka, Miki Segawa, Keiji Sano i Sumiko Inouye. "Characterization of a Small Heat Shock Protein, Mx Hsp16.6, of Myxococcus xanthus". Journal of Bacteriology 187, nr 15 (1.08.2005): 5236–41. http://dx.doi.org/10.1128/jb.187.15.5236-5241.2005.
Pełny tekst źródłaLöw, Daniela, Kurt Brändle, Lutz Nover i Christoph Forreiter. "Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo". Planta 211, nr 4 (15.09.2000): 575–82. http://dx.doi.org/10.1007/s004250000315.
Pełny tekst źródłaZhang, Yanhao, Shanshan Li, Qianyi Liu, Ruiying Long, Jihong Feng, Huan Qin, Mao Li, Liping Liu i Junmin Luo. "Mycobacterium tuberculosis Heat-Shock Protein 16.3 Induces Macrophage M2 Polarization Through CCRL2/CX3CR1". Inflammation 43, nr 2 (20.11.2019): 487–506. http://dx.doi.org/10.1007/s10753-019-01132-9.
Pełny tekst źródłaMa, Pengfei, Jie Li, Lei Qi i Xiuzhu Dong. "The Archaeal Small Heat Shock Protein Hsp17.6 Protects Proteins from Oxidative Inactivation". International Journal of Molecular Sciences 22, nr 5 (4.03.2021): 2591. http://dx.doi.org/10.3390/ijms22052591.
Pełny tekst źródłaWagner, Daniela, Jens Schneider-Mergener i Christoph Forreiter. "Analysis of Chaperone Function and Formation of Hetero-oligomeric Complexes of Hsp18.1 and Hsp17.7, Representing Two Different Cytoplasmic sHSP Classes in Pisum sativum". Journal of Plant Growth Regulation 24, nr 3 (wrzesień 2005): 226–37. http://dx.doi.org/10.1007/s00344-005-0020-3.
Pełny tekst źródłaZhang, L., C. Lohmann, R. Prändl i F. Schöffl. "Heat Stress-Dependent DNA Binding of Arabidopsis Heat Shock Transcription Factor HSF1 to Heat Shock Gene Promoters in Arabidopsis Suspension Culture Cells in vivo". Biological Chemistry 384, nr 6 (16.06.2003): 959–63. http://dx.doi.org/10.1515/bc.2003.108.
Pełny tekst źródłaWANG, Z., B. LAI, J. CAO, Z. LI, L. QU, A. CAO i L. LAI. "Hierarchical Unfolding of Mj HSP16.5". Acta Physico-Chimica Sinica 24, nr 10 (październik 2008): 1745–50. http://dx.doi.org/10.1016/s1872-1508(08)60070-4.
Pełny tekst źródłaRozprawy doktorskie na temat "HSP18.5"
Saxena, Anita. "Role of Hsp105 in CFTR Biogenesis". University of Toledo Health Science Campus / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=mco1279120195.
Pełny tekst źródłaFang, Feng. "EXPRESSION OF HEAT SHOCK GENES HSP16.6 AND HTPG IN THE CYANOBACTERIUM, SYNECHOCYSTIS SP. PCC 6803". Miami University / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=miami1060835729.
Pełny tekst źródłaSERVANT, PASCALE. "La reponse au choc thermique chez streptomyces albus : etude des genes groe et caracterisation de la proteine hsp18". Paris 7, 1994. http://www.theses.fr/1994PA077303.
Pełny tekst źródłaBoehm, Christian Reiner. "Gene expression control for synthetic patterning of bacterial populations and plants". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267842.
Pełny tekst źródłaShih, Chung-Cheng, i 施駿成. "Cloning, Expression, Purification and Chaperone-like Activity of a Small Heat-shock Protein, HSP16.1, from Caenorhabditis elegans". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/17108316576923005625.
Pełny tekst źródła國立臺灣大學
生化科學研究所
92
Small heat shock proteins (sHSPs) form a diverse family of proteins that are produced under various stresses in all organisms. It has been shown that they have chaperone-like activity, which can bind unfolded or misfolded proteins and maintain them in a folding-competent state. The common structural features of small heat shock proteins comprise an N-terminal domain and a C-terminal tail, which flank the evolutionarily conserved α-crystallin domain. However, α-crystallin, a major protein class of most animal eye lenses, was also found to possess chaperone-like activity similar to small heat shock proteins. Thus sHSPs and α-crystallin constitute a superfamily of related molecular chaperones with similar chaperone-like activity and aggregation property. In this thesis, we cloned, overexpressed, and characterized the chaperone-like activity of HSP16.1 from Caenorhabditis elegans. The cDNA sequence encoding HSP16.1 was amplified using reverse transcriptase/ polymerase chain reaction (RT-PCR) based on the two primers designed according to the nucleotide sequences obtained from the database of C. elegans. After overexpression, HSP16.1 was purified by two different size-exclusion chromatographies. The result from gel-filtration showed that the molecular mass of native HSP16.1 is about 670 kDa, which is different from that estimated from native gradient-gel electrophoresis and analytical ultracentrifugation. Although the midpoint temperature for protein aggregation of HSP16.1 is about 86℃, the secondary structure gradually changes when the temperature is over 50℃, accompanied by the decrease of chaperone-like activity. In contrast to α-crystallin from mammalian eye lenses, the oligomeric complexes and chaperone-like activity of HSP16.1 do not change after preheating treatment. These results suggested that HSP16.1 may be a thermostable protein with refolding potential, and its secondary structure is important to its chaperone-like activity. It is also of interest to find that the increase of calcium ion causes the decrease of chaperone-like activity of HSP16.1. Detailed mechanistic study of this effect is currently in progress.
Części książek na temat "HSP18.5"
Hatayama, Takumi. "Mammalian 105-kDa Heat-Shock Protein HSP105 and Its Biological Function". W Thermotherapy for Neoplasia, Inflammation, and Pain, 371–81. Tokyo: Springer Japan, 2001. http://dx.doi.org/10.1007/978-4-431-67035-3_42.
Pełny tekst źródłaSaito, Youhei, i Yuji Nakayama. "Mammalian Heat Shock Protein Hsp105: The Hsp70 Inducer and a Potent Target for Cancer Therapy". W HSP70 in Human Diseases and Disorders, 347–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89551-2_18.
Pełny tekst źródłaStreszczenia konferencji na temat "HSP18.5"
Pupa, Serenella M., Roberta Zappasodi, Italia Bongarzone, Antonello Cabras, Gaia C. Ghedini, Lorenzo Castagnoli, Francesca Micciché, Massimo A. Gianni i Massimo Di Nicola. "Abstract 4785: Identification of HSP105 as a novel non-Hodgkin lymphoma (NHL) restricted antigen". W Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4785.
Pełny tekst źródłaRaporty organizacyjne na temat "HSP18.5"
Blum, Abraham, Henry T. Nguyen i N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, sierpień 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Pełny tekst źródła