Rozprawy doktorskie na temat „Homology search”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 19 najlepszych rozpraw doktorskich naukowych na temat „Homology search”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Syed, Intikhab Alam Syed Intikhab Alam Syed Intikhab Alam. "Integrative approaches to protein homology search". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975814540.
Pełny tekst źródłaAlam, Intikhab. "Integrative approaches to protein homology search". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975814540.
Pełny tekst źródłaCameron, Michael, i mcam@mc-mc net. "Efficient Homology Search for Genomic Sequence Databases". RMIT University. Computer Science and Information Technology, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070509.162443.
Pełny tekst źródłaCooper, Gina Marie. "IMPROVING REMOTE HOMOLOGY DETECTION USING A SEQUENCE PROPERTY APPROACH". Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1251308636.
Pełny tekst źródłaRenkawitz, Jörg. "Monitoring homology search during DNA double-strand break repair in vivo". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-169454.
Pełny tekst źródłaAnstett, Benjamin [Verfasser], i Peter [Akademischer Betreuer] Becker. "Homology search guidance by the yeast recombination enhancer / Benjamin Anstett ; Betreuer: Peter Becker". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1132995329/34.
Pełny tekst źródłaLee, Tsung-Lu. "BAXQLB̲LAST an enhanced BLAST bioinformatics homology search tool with batch and structured query support /". [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001161.
Pełny tekst źródłaRenkawitz, Jörg [Verfasser], i Stefan [Akademischer Betreuer] Jentsch. "Monitoring homology search during DNA double-strand break repair in vivo / Jörg Renkawitz. Betreuer: Stefan Jentsch". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2013. http://d-nb.info/1050648188/34.
Pełny tekst źródłaFreyhult, Eva. "A Study in RNA Bioinformatics : Identification, Prediction and Analysis". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8305.
Pełny tekst źródłaGajdoš, Pavel. "Vyhledávání homologních enzymů". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255409.
Pełny tekst źródłaDarbha, Sriram. "RNA Homology Searches Using Pair Seeding". Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/1172.
Pełny tekst źródłaWe also show that pair seeds can be effectively combined with the spaced seeds approach to nucleotide homology search. The hybrid search method has theoretical specificity superior to that of the BLAST seed. We provide experimental evaluation of our hypotheses. Finally, we note that our method is easily modified to process pseudo-knotted regions in the query, something outside the scope of covariance model based methods.
Bussotti, Giovanni 1983. "Detecting and comparing non-coding RNAs". Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/128970.
Pełny tekst źródłaEn los últimos años el interés en el campo de los ARN no codificantes ha crecido mucho a causa del enorme aumento de la cantidad de secuencias no codificantes disponibles y a que muchos de estos transcriptos han dado muestra de ser importantes en varias funciones celulares. En este contexto, es fundamental el desarrollo de métodos para la correcta detección y comparativa de secuencias de ARN. Alinear nucleótidos es uno de los enfoques principales para buscar genes homólogos, identificar relaciones evolutivas, regiones conservadas y en general, patrones biológicos importantes. Sin embargo, comparar moléculas de ARN es una tarea difícil. Esto es debido a que el alfabeto de nucleótidos es más simple y por ello menos informativo que el de las proteínas. Además es probable que para muchos ARN la evolución haya mantenido la estructura en mayor grado que la secuencia, y esto hace que las secuencias sean poco conservadas y difícilmente comparables. Por lo tanto, hacen falta nuevos métodos capaces de utilizar otras fuentes de información para generar mejores alineamientos de ARN. En esta tesis doctoral se ha intentado dar respuesta exactamente a estas temáticas. Por un lado desarrollado un nuevo algoritmo para detectar relaciones de homología entre genes de ARN no codificantes evolutivamente lejanos. Por otro lado se ha hecho minería de datos mediante el uso de datos ya disponibles para descubrir nuevos genes y generar perfiles de ARN no codificantes en todo el genoma.
Bundschuh, Julia. "Molecular studies in gorgonian alloimmunity : search for gene homologs of the immunoglobulin gene superfamily in Swiftia exserta". FIU Digital Commons, 1991. http://digitalcommons.fiu.edu/etd/1942.
Pełny tekst źródłaNichio, Bruno Thiago de Lima. "Consolidação e validação da ferramenta Rapid Alignment Free Tool for Sequences Similarity Search to Groups (RAFTS3GROUPS) : um software rápido de clusterização para big data e buscador consistente de proteínas ortólogas". reponame:Repositório Institucional da UFPR, 2016. http://hdl.handle.net/1884/49076.
Pełny tekst źródłaCoorientadores : Dra. Jeroniza Nunes Marchaukoski e Dr. Vinícius Almir Weiss
Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Educação Profissional e Tecnológica, Programa de Pós-Graduação em Bioinformática. Defesa: Curitiba, 16/09/2016
Inclui referências ao final dos capítulos
Resumo: Uma das principais análises envolvendo sequências biológicas, imprescindíveis e complexas, é a análise de homologia. A necessidade de desenvolver técnicas e ferramentas computacionais que consigam predizer com mais eficiência grupos de ortólogos e, ao mesmo tempo, lidar com grande volume de informações biológicas, ainda é um grande gargalo a ser superado pela bioinformática. Atualmente, não existe uma única ferramenta eficiente na detecção desses grupos, pois ainda requerem muito esforço computacional e tempo. Metodologias já consolidadas, como o BLAST 'todos contra todos', RBH e ferramentas como o OrthoMCL, demandam um alto custo computacional e falham quando há ortologia, necessitando de uma intervenção manual sofisticada. Diante desse cenário, neste trabalho, aprensentamos um breve review referente às técnicas, desenvolvidas entre 2011 até metade de 2017, para a detecção de ortólogos, descrevendo 12 ferramentas e contextualizando os principais problemas ainda a serem superados. A maioria das ferramentas utiliza o algoritmo BLAST como algoritmo padrão predição de homologia entre sequências. Apresentamos também uma nova abordagem para a clusterização de homólogos, a ferramenta RAFTS3groups. Para validarmos a ferramenta utilizamos como base de dados o UniProtKB/Swiss-Prot com outras ferramentas de clusterização o UCLUST e CD-HIT. RAFTS3groups mostrou-se ser mais de 4 vezes mais rápido que o CD-HIT e equiparável em volume de clusters e de tempo à ferramenta UCLUST. Para análise e consolidação de homologia, introduzimos uma nova aplicação auxiliar à ferramenta RAFTS3groups, na clusterização de ortólogos, o script DivideCluster. Comparamos com o método BLAST 'todos contra todos', analisando 9 genomas completos de Herbaspirillum spp. disponíveis no NCBI genbank. RAFTS3groups mostrou-se tão eficiente quanto o método, apresentando cerca de 96% de correlação entre os resultados de clusterização de core e pan genoma obtidos. Palavras-chave: homologia, clusterização, alignment-free, k-means, RAFTS3.
Abstract: One of the main tests involving biological sequences, essential and complex, is the analysis of homology. The study of homologous genes involved in processes such as cell cycle, DNA repair in simpler organisms, even with large evolutionary distance, there are genes that are shared between primates, yeasts and bacteria, which we call (core-genome). The need to develop computational tools and techniques that can predict more efficiently ortologs groups and handle large volume of biological information is still a problem to be resolved by Bioinformatics. We don't have a single powerful tool in detecting groups that still require a lot of effort and computing time. Tools, already consolidated, as the BLAST ' 'all-against-all' ', RBH, OrthoMCL, demand a high computational cost and fail when there is orthology, requiring manual intervention. In this scenario, in this work we presents a brief review on main techniques, developed between 2011 until early 2016, for the detection of orthologs groups, describing 12 tools and being developed currently and the main problems main problems still to be overcome. We note that most tools uses the BLAST as default prediction of homology between sequences. We also present a new approach for the analysis of homology, the RAFTS3groups tool. We use as the database UniProtKB /Swiss-Prot with the clustering tools the UCLUST and the CD-HIT. RAFTS3groups proved to be more than 4 times faster than CD-HIT and comparable in volume to clusters and time with UCLUST tool. In Homology analysis we introduced a new clustering strategy of orthology, the DivideCluster algorithm aplication built into the RAFTS3groups. Compared with the BLAST 'all-against-all', analyzing 9 complete genomes from Herbaspirillum spp. available by NCBI genbank. RAFTS3groups was shown to be as efficient as the method, showing approximately 96% of the correlation among the clustering results of core and pan genome obtained. Key-words: homology, clustering, alignment-free, k-means clustering, RAFTS3.
Yazbeck, Ali. "Improved Workflows for RNA Homology Search". 2019. https://ul.qucosa.de/id/qucosa%3A34681.
Pełny tekst źródłaAlam, Intikhab [Verfasser]. "Integrative approaches to protein homology search / by Intikhab Alam". 2005. http://d-nb.info/975814540/34.
Pełny tekst źródłaYuen, Denis. "SPIDER: Reconstructive Protein Homology Search with De Novo Sequencing Tags". Thesis, 2011. http://hdl.handle.net/10012/5853.
Pełny tekst źródłaGruber, Andreas R., Carsten Kilgus, Axel Mosig, Ivo L. Hofacker, Wolfgang Hennig i Peter F. Stadler. "Arthropod 7SK RNA". 2008. https://ul.qucosa.de/id/qucosa%3A32793.
Pełny tekst źródłaHertel, Jana, Jong Danielle de, Manja Marz, Dominic Rose, Hakim Tafer, Andrea Tanzer, Bernd Schierwater i Peter F. Stadler. "Non-coding RNA annotation of the genome of Trichoplax adhaerens". 2009. https://ul.qucosa.de/id/qucosa%3A32946.
Pełny tekst źródła