Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Homogeneous Operators.

Książki na temat „Homogeneous Operators”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 16 najlepszych książek naukowych na temat „Homogeneous Operators”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Smooth homogeneous structures in operator theory. Boca Raton: Chapman & Hall/CRC, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mass.) AMS Special Session on Radon Transforms and Geometric Analysis (2012 Boston. Geometric analysis and integral geometry: AMS special session in honor of Sigurdur Helgason's 85th birthday, radon transforms and geometric analysis, January 4-7, 2012, Boston, MA ; Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces, January 8-9, 2012, Medford, MA. Redaktorzy Quinto, Eric Todd, 1951- editor of compilation, Gonzalez, Fulton, 1956- editor of compilation, Christensen, Jens Gerlach, 1975- editor of compilation i Tufts University. Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces. Providence, Rhode Island: American Mathematical Society, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Analytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory. Heidelberg: Birkhäuser, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Epstein, Charles L., i Rafe Mazzeo. The Model Solution Operators. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0004.

Pełny tekst źródła
Streszczenie:
This chapter introduces the model problems and the solution operator for the associated heat equations. These operators give a good approximation for the behavior of the heat kernel in neighborhoods of different types of boundary points. The chapter states and proves the elementary features of these operators and shows that the model heat operators have an analytic continuation to the right half plane. It first considers the model problem in 1-dimension and in higher dimensions before discussing the solution to the homogeneous Cauchy problem. It then describes the first steps toward perturbation theory and constructs the solution operator for generalized Kimura diffusions on a suitable scale of Hölder spaces. It also defines the resolvent families and explains why the estimates obtained here are not adequate for the perturbation theoretic arguments needed to construct the solution operator for generalized Kimura diffusions.
Style APA, Harvard, Vancouver, ISO itp.
5

Epstein, Charles L., i Rafe Mazzeo. Degenerate Diffusion Operators Arising in Population Biology (AM-185). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.001.0001.

Pełny tekst źródła
Streszczenie:
This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the martingale problem and therefore the existence of the associated Markov process. The book uses an “integral kernel method” to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. The book establishes the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. It shows that the semigroups defined by these operators have holomorphic extensions to the right half plane. The book also demonstrates precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.
Style APA, Harvard, Vancouver, ISO itp.
6

Beltita, Daniel. Smooth Homogeneous Structures in Operator Theory. Taylor & Francis Group, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Beltita, Daniel. Smooth Homogeneous Structures in Operator Theory. Taylor & Francis Group, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Beltita, Daniel. Smooth Homogeneous Structures in Operator Theory. Taylor & Francis Group, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Epstein, Charles L., i Rafe Mazzeo. The Resolvent Operator. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0011.

Pełny tekst źródła
Streszczenie:
This chapter describes the construction of a resolvent operator using the Laplace transform of a parametrix for the heat kernel and a perturbative argument. In the equation (μ‎-L) R(μ‎) f = f, R(μ‎) is a right inverse for (μ‎-L). In Hölder spaces, these are the natural elliptic estimates for generalized Kimura diffusions. The chapter first constructs the resolvent kernel using an induction over the maximal codimension of bP, and proves various estimates on it, along with corresponding estimates for the solution operator for the homogeneous Cauchy problem. It then considers holomorphic semi-groups and uses contour integration to construct the solution to the heat equation, concluding with a discussion of Kimura diffusions where all coefficients have the same leading homogeneity.
Style APA, Harvard, Vancouver, ISO itp.
10

Tolsa, Xavier. Analytic Capacity, the Cauchy Transform, and Non-Homogeneous Calderón-Zygmund Theory. Springer International Publishing AG, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Beltita, Daniel. Smooth Homogeneous Structures in Operator Theory. Monographs and Surveys in Pure and Applied Mathematics. Taylor & Francis Group, 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Epstein, Charles L., i Rafe Mazzeo. Holder Estimates for General Models. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0009.

Pełny tekst źródła
Streszczenie:
This chapter presents the Hölder estimates for general model problems. It first estimates solutions to heat equations for both the homogeneous Cauchy problem and the inhomogeneous problem, obtaining first and second derivative estimates in the latter case, before discussing a general result describing the off-diagonal and long-time behavior of the solution kernel for the general model. It also states a proposition summarizing the properties of the resolvent operator as an operator on the Hölder spaces. In contrast to the case of the heat equation, there is no need to assume that the data has compact support in the x-variables to prove estimates when k > 0.
Style APA, Harvard, Vancouver, ISO itp.
13

Epstein, Charles L., i Rafe Mazzeo. The Semi-group on. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0012.

Pełny tekst źródła
Streszczenie:
This chapter deals with the semi-group on the space Β‎⁰(P). It first describes the boundary behavior of elements of the adjoint operator at points in the interiors of hypersurface boundary components before discussing the null-space of the adjoint under the hypothesis that a generalized Kimura diffusion operator, L, meets bP cleanly. It then examines long time asymptotics, along with a lemma in which P is a compact manifold with corners and L is a generalized Kimura diffusion on P. It also considers the existence of irregular solutions to the homogeneous equations Lu = f, for functions that do not belong to the range of the generator of a C⁰-semi-group on Β‎⁰(P).
Style APA, Harvard, Vancouver, ISO itp.
14

Epstein, Charles L., i Rafe Mazzeo. Existence of Solutions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0010.

Pełny tekst źródła
Streszczenie:
This chapter proves existence of solutions to the inhomogeneous problem using the Schauder estimate and analyzes a generalized Kimura diffusion operator, L, defined on a manifold with corners, P. The discussion centers on the solution w = v + u, where v solves the homogeneous Cauchy problem with v(x, 0) = f(x) and u solves the inhomogeneous problem with u(x, 0) = 0. The chapter first provides definitions for the Wright–Fisher–Hölder spaces on a general compact manifold with corners before explaining the steps involved in the existence proof. It then verifies the induction hypothesis and treats the k = 0 case. It also shows how to perform the doubling construction for P and considers the existence of the resolvent operator and a contraction semi-group. Finally, it discusses the problem of higher regularity.
Style APA, Harvard, Vancouver, ISO itp.
15

Epstein, Charles L., i Rafe Mazzeo. Holder Estimates for Euclidean Models. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0008.

Pełny tekst źródła
Streszczenie:
This chapter presents the Hölder space estimates for Euclidean model problems. It first considers the homogeneous Cauchy problem and the inhomogeneous problem before defining the resolvent operator as the Laplace transform of the heat kernel. It then describes the 1-dimensional kernel estimates that form essential components of the proofs of the Hölder estimates for the general model problems; these include basic kernel estimates, first derivative estimates, and second derivative estimates. The proofs of these estimates are elementary. The chapter concludes by proving estimates on the resolvent and investigating the off-diagonal behavior of the heat kernel in many variables.
Style APA, Harvard, Vancouver, ISO itp.
16

Epstein, Charles L., i Rafe Mazzeo. Holder Estimates for Higher Dimensional Corner Models. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0007.

Pełny tekst źródła
Streszczenie:
This chapter establishes Hölder space estimates for higher dimensional corner model problems. It first explains the homogeneous Cauchy problem before estimating the solution of the inhomogeneous problem in a n-dimensional corner. It then reduces the proof of an estimate in higher dimensions to the estimation of a product of 1-dimensional integrals. Using the “1-variable-at-a-time” method, the chapter proves the higher dimensional estimates in several stages by considering the “pure corner” case where m = 0, and then turns to the Euclidean case, where n = 0. It also discusses the resolvent operator as the Laplace transform of the heat kernel.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii