Artykuły w czasopismach na temat „Hippocampal Pyramidal Neuronal Dendrites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hippocampal Pyramidal Neuronal Dendrites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tonini, Raffaella, Teresa Ferraro, Marisol Sampedro-Castañeda, Anna Cavaccini, Martin Stocker, Christopher D. Richards i Paola Pedarzani. "Small-conductance Ca2+-activated K+ channels modulate action potential-induced Ca2+ transients in hippocampal neurons". Journal of Neurophysiology 109, nr 6 (15.03.2013): 1514–24. http://dx.doi.org/10.1152/jn.00346.2012.
Pełny tekst źródłaQuach, Tam, Nathalie Auvergnon, Rajesh Khanna, Marie-Françoise Belin, Papachan Kolattukudy, Jérome Honnorat i Anne-Marie Duchemin. "Opposing Morphogenetic Defects on Dendrites and Mossy Fibers of Dentate Granular Neurons in CRMP3-Deficient Mice". Brain Sciences 8, nr 11 (3.11.2018): 196. http://dx.doi.org/10.3390/brainsci8110196.
Pełny tekst źródłaChen, Chih-Ming, Lauren L. Orefice, Shu-Ling Chiu, Tara A. LeGates, Samer Hattar, Richard L. Huganir, Haiqing Zhao, Baoji Xu i Rejji Kuruvilla. "Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice". Proceedings of the National Academy of Sciences 114, nr 4 (9.01.2017): E619—E628. http://dx.doi.org/10.1073/pnas.1615792114.
Pełny tekst źródłaKomendantov, Alexander O., i Giorgio A. Ascoli. "Dendritic Excitability and Neuronal Morphology as Determinants of Synaptic Efficacy". Journal of Neurophysiology 101, nr 4 (kwiecień 2009): 1847–66. http://dx.doi.org/10.1152/jn.01235.2007.
Pełny tekst źródłaAshhad, Sufyan, i Rishikesh Narayanan. "Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons". Proceedings of the National Academy of Sciences 113, nr 23 (23.05.2016): E3280—E3289. http://dx.doi.org/10.1073/pnas.1522180113.
Pełny tekst źródłaSrivastava, U. C., Durgesh Singh, Prashant Kumar i Sippy Singh. "Neuronal diversity and their spine density in the hippocampal complex of the House Crow (Corvus splendens), a food-storing bird". Canadian Journal of Zoology 94, nr 8 (sierpień 2016): 541–53. http://dx.doi.org/10.1139/cjz-2015-0260.
Pełny tekst źródłaFlood, Dorothy G., i Paul D. Coleman. "Failed Compensatory Dendritic Growth as a Pathophysiological Process in Alzheimer's Disease". Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 13, S4 (listopad 1986): 475–79. http://dx.doi.org/10.1017/s031716710003715x.
Pełny tekst źródłaIshikawa, Tomoe, i Yuji Ikegaya. "Locally sequential synaptic reactivation during hippocampal ripples". Science Advances 6, nr 7 (luty 2020): eaay1492. http://dx.doi.org/10.1126/sciadv.aay1492.
Pełny tekst źródłaCraig, Emma, Christopher M. Dillingham, Michal M. Milczarek, Heather M. Phillips, Moira Davies, James C. Perry i Seralynne D. Vann. "Lack of change in CA1 dendritic spine density or clustering in rats following training on a radial-arm maze task". Wellcome Open Research 5 (14.04.2020): 68. http://dx.doi.org/10.12688/wellcomeopenres.15745.1.
Pełny tekst źródłaCraig, Emma, Christopher M. Dillingham, Michal M. Milczarek, Heather M. Phillips, Moira Davies, James C. Perry i Seralynne D. Vann. "Lack of change in CA1 dendritic spine density or clustering in rats following training on a radial-arm maze task". Wellcome Open Research 5 (15.05.2020): 68. http://dx.doi.org/10.12688/wellcomeopenres.15745.2.
Pełny tekst źródłaCarnevale, Nicholas T., Kenneth Y. Tsai, Brenda J. Claiborne i Thomas H. Brown. "Comparative Electrotonic Analysis of Three Classes of Rat Hippocampal Neurons". Journal of Neurophysiology 78, nr 2 (1.08.1997): 703–20. http://dx.doi.org/10.1152/jn.1997.78.2.703.
Pełny tekst źródłaBancroft, Eric, Rahul Srinivasan i Lee A. Shapiro. "Macrophage Migration Inhibitory Factor Alters Functional Properties of CA1 Hippocampal Neurons in Mouse Brain Slices". International Journal of Molecular Sciences 21, nr 1 (31.12.2019): 276. http://dx.doi.org/10.3390/ijms21010276.
Pełny tekst źródłaNarayanan, Rishikesh, i Sumantra Chattarji. "Computational Analysis of the Impact of Chronic Stress on Intrinsic and Synaptic Excitability in the Hippocampus". Journal of Neurophysiology 103, nr 6 (czerwiec 2010): 3070–83. http://dx.doi.org/10.1152/jn.00913.2009.
Pełny tekst źródłaSá, Maria José, Carlos Ruela i Maria Dulce Madeira. "Dendritic right/left asymmetries in the neurons of the human hippocampal formation: a quantitative Golgi study". Arquivos de Neuro-Psiquiatria 65, nr 4b (grudzień 2007): 1105–13. http://dx.doi.org/10.1590/s0004-282x2007000700003.
Pełny tekst źródłaShim, Seong S., Michael D. Hammonds i Ronald F. Mervis. "Four weeks lithium treatment alters neuronal dendrites in the rat hippocampus". International Journal of Neuropsychopharmacology 16, nr 6 (1.07.2013): 1373–82. http://dx.doi.org/10.1017/s1461145712001423.
Pełny tekst źródłaLetellier, Mathieu, Yun Kyung Park, Thomas E. Chater, Peter H. Chipman, Sunita Ghimire Gautam, Tomoko Oshima-Takago i Yukiko Goda. "Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks". Proceedings of the National Academy of Sciences 113, nr 19 (26.04.2016): E2685—E2694. http://dx.doi.org/10.1073/pnas.1523717113.
Pełny tekst źródłaMoreno, David G., Emma C. Utagawa, Nicoleta C. Arva, Kristian T. Schafernak, Elliott J. Mufson i Sylvia E. Perez. "Postnatal Cytoarchitecture and Neurochemical Hippocampal Dysfunction in Down Syndrome". Journal of Clinical Medicine 10, nr 15 (31.07.2021): 3414. http://dx.doi.org/10.3390/jcm10153414.
Pełny tekst źródłaShen, Hui, i Sheryl S. Smith. "Plasticity of the α4βδ GABAA receptor". Biochemical Society Transactions 37, nr 6 (19.11.2009): 1378–84. http://dx.doi.org/10.1042/bst0371378.
Pełny tekst źródłaKoh, Ingrid Y. Y., W. Brent Lindquist, Karen Zito, Esther A. Nimchinsky i Karel Svoboda. "An Image Analysis Algorithm for Dendritic Spines". Neural Computation 14, nr 6 (1.06.2002): 1283–310. http://dx.doi.org/10.1162/089976602753712945.
Pełny tekst źródłaTyrtyshnaia, Anna, Anatoly Bondar, Sophia Konovalova i Igor Manzhulo. "Synaptamide Improves Cognitive Functions and Neuronal Plasticity in Neuropathic Pain". International Journal of Molecular Sciences 22, nr 23 (26.11.2021): 12779. http://dx.doi.org/10.3390/ijms222312779.
Pełny tekst źródłaLee, Min Soo, Seung Bum Yang i Jun Ho Heo. "Application of Thallium Autometallography for Observation of Changes in Excitability of Rodent Brain following Acute Carbon Monoxide Intoxication". Journal of The Korean Society of Clinical Toxicology 17, nr 2 (31.12.2019): 66–78. http://dx.doi.org/10.22537/jksct.2019.17.2.66.
Pełny tekst źródłaLee, Min Soo, Seung Bum Yang i Jun Ho Heo. "Application of Thallium Autometallography for Observation of Changes in Excitability of Rodent Brain following Acute Carbon Monoxide Intoxication". Journal of The Korean Society of Clinical Toxicology 17, nr 2 (31.12.2019): 66–78. http://dx.doi.org/10.22537/jksct.17.2.66.
Pełny tekst źródłaZhuravleva, Z. N. "Ultrastructural Signs of Regenerative-Degenerative Processes in Long-Term Dentate Fascia Grafts". Journal of Neural Transplantation and Plasticity 5, nr 3 (1994): 183–97. http://dx.doi.org/10.1155/np.1994.183.
Pełny tekst źródłaSakalar, Ece, Thomas Klausberger i Bálint Lasztóczi. "Neurogliaform cells dynamically decouple neuronal synchrony between brain areas". Science 377, nr 6603 (15.07.2022): 324–28. http://dx.doi.org/10.1126/science.abo3355.
Pełny tekst źródłaCanals, S., I. Makarova, L. López-Aguado, C. Largo, J. M. Ibarz i O. Herreras. "Longitudinal Depolarization Gradients Along the Somatodendritic Axis of CA1 Pyramidal Cells: A Novel Feature of Spreading Depression". Journal of Neurophysiology 94, nr 2 (sierpień 2005): 943–51. http://dx.doi.org/10.1152/jn.01145.2004.
Pełny tekst źródłaTyrtyshnaia, Anna A., Igor V. Manzhulo, Sophia P. Konovalova i Anna A. Zagliadkina. "Neuropathic Pain Causes a Decrease in the Dendritic Tree Complexity of Hippocampal CA3 Pyramidal Neurons". Cells Tissues Organs 208, nr 3-4 (2019): 89–100. http://dx.doi.org/10.1159/000506812.
Pełny tekst źródłaNarayanan, Rishikesh, Anusha Narayan i Sumantra Chattarji. "A Probabilistic Framework for Region-Specific Remodeling of Dendrites in Three-Dimensional Neuronal Reconstructions". Neural Computation 17, nr 1 (1.01.2005): 75–96. http://dx.doi.org/10.1162/0899766052530811.
Pełny tekst źródłaPrakash, Chandra, Shyam Sunder Rabidas, Jyoti Tyagi i Deepak Sharma. "Dehydroepiandrosterone Attenuates Astroglial Activation, Neuronal Loss and Dendritic Degeneration in Iron-Induced Post-Traumatic Epilepsy". Brain Sciences 13, nr 4 (27.03.2023): 563. http://dx.doi.org/10.3390/brainsci13040563.
Pełny tekst źródłaTrivino-Paredes, J. S., P. C. Nahirney, C. Pinar, P. Grandes i B. R. Christie. "Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study". Journal of Neurophysiology 122, nr 3 (1.09.2019): 958–69. http://dx.doi.org/10.1152/jn.00332.2019.
Pełny tekst źródłaAmbrogini, Patrizia, Davide Lattanzi, Marica Pagliarini, Michael Di Palma, Stefano Sartini, Riccardo Cuppini, Kjell Fuxe i Dasiel Oscar Borroto-Escuela. "5HT1AR-FGFR1 Heteroreceptor Complexes Differently Modulate GIRK Currents in the Dorsal Hippocampus and the Dorsal Raphe Serotonin Nucleus of Control Rats and of a Genetic Rat Model of Depression". International Journal of Molecular Sciences 24, nr 8 (18.04.2023): 7467. http://dx.doi.org/10.3390/ijms24087467.
Pełny tekst źródłaMcEwen, B. S., A. M. Magarinos i L. P. Reagan. "Structural plasticity and tianeptine: cellular and molecular targets". European Psychiatry 17, S3 (lipiec 2002): 318s—330s. http://dx.doi.org/10.1016/s0924-9338(02)00650-8.
Pełny tekst źródłaSancho-Balsells, Anna, Sara Borràs-Pernas, Verónica Brito, Jordi Alberch, Jean-Antoine Girault i Albert Giralt. "Cognitive and Emotional Symptoms Induced by Chronic Stress Are Regulated by EGR1 in a Subpopulation of Hippocampal Pyramidal Neurons". International Journal of Molecular Sciences 24, nr 4 (14.02.2023): 3833. http://dx.doi.org/10.3390/ijms24043833.
Pełny tekst źródłaChen, Chu, i Nicolas G. Bazan. "Endogenous PGE2 Regulates Membrane Excitability and Synaptic Transmission in Hippocampal CA1 Pyramidal Neurons". Journal of Neurophysiology 93, nr 2 (luty 2005): 929–41. http://dx.doi.org/10.1152/jn.00696.2004.
Pełny tekst źródłaPark, Hae Jeong, Ira Rajbhandari, Han Soo Yang, Soojung Lee, Delia Cucoranu, Deborah S. Cooper, Janet D. Klein, Jeff M. Sands i Inyeong Choi. "Neuronal expression of sodium/bicarbonate cotransporter NBCn1 (SLC4A7) and its response to chronic metabolic acidosis". American Journal of Physiology-Cell Physiology 298, nr 5 (maj 2010): C1018—C1028. http://dx.doi.org/10.1152/ajpcell.00492.2009.
Pełny tekst źródłaClemens, Ann M., i Daniel Johnston. "Age- and location-dependent differences in store depletion-induced h-channel plasticity in hippocampal pyramidal neurons". Journal of Neurophysiology 111, nr 6 (15.03.2014): 1369–82. http://dx.doi.org/10.1152/jn.00839.2013.
Pełny tekst źródłaRuiter, Marvin, Lotte J. Herstel i Corette J. Wierenga. "Reduction of Dendritic Inhibition in CA1 Pyramidal Neurons in Amyloidosis Models of Early Alzheimer’s Disease". Journal of Alzheimer's Disease 78, nr 3 (24.11.2020): 951–64. http://dx.doi.org/10.3233/jad-200527.
Pełny tekst źródłaCastello-Waldow, Tim P., Ghabiba Weston, Alessandro F. Ulivi, Alireza Chenani, Yonatan Loewenstein, Alon Chen i Alessio Attardo. "Hippocampal neurons with stable excitatory connectivity become part of neuronal representations". PLOS Biology 18, nr 11 (3.11.2020): e3000928. http://dx.doi.org/10.1371/journal.pbio.3000928.
Pełny tekst źródłaO'Beirne, M., N. Gurevich i P. L. Carlen. "Pentobarbital inhibits hippocampal neurons by increasing potassium conductance". Canadian Journal of Physiology and Pharmacology 65, nr 1 (1.01.1987): 36–41. http://dx.doi.org/10.1139/y87-007.
Pełny tekst źródłaD'Apuzzo, Massimo, Georgia Mandolesi, Gerald Reis i Erin M. Schuman. "Abundant GFP Expression and LTP in Hippocampal Acute Slices by In Vivo Injection of Sindbis Virus". Journal of Neurophysiology 86, nr 2 (1.08.2001): 1037–42. http://dx.doi.org/10.1152/jn.2001.86.2.1037.
Pełny tekst źródłaHodapp, Alexander, Martin E. Kaiser, Christian Thome, Lingjun Ding, Andrei Rozov, Matthias Klumpp, Nikolas Stevens i in. "Dendritic axon origin enables information gating by perisomatic inhibition in pyramidal neurons". Science 377, nr 6613 (23.09.2022): 1448–52. http://dx.doi.org/10.1126/science.abj1861.
Pełny tekst źródłaSáray, Sára, Christian A. Rössert, Shailesh Appukuttan, Rosanna Migliore, Paola Vitale, Carmen A. Lupascu, Luca L. Bologna i in. "HippoUnit: A software tool for the automated testing and systematic comparison of detailed models of hippocampal neurons based on electrophysiological data". PLOS Computational Biology 17, nr 1 (29.01.2021): e1008114. http://dx.doi.org/10.1371/journal.pcbi.1008114.
Pełny tekst źródłaEndo, Toshiaki, Etsuko Tarusawa, Takuya Notomi, Katsuyuki Kaneda, Masumi Hirabayashi, Ryuichi Shigemoto i Tadashi Isa. "Dendritic Ih Ensures High-Fidelity Dendritic Spike Responses of Motion-Sensitive Neurons in Rat Superior Colliculus". Journal of Neurophysiology 99, nr 5 (maj 2008): 2066–76. http://dx.doi.org/10.1152/jn.00556.2007.
Pełny tekst źródłaHuguenard, John. "Neurotransmitter Supply and Demand in Epilepsy". Epilepsy Currents 3, nr 2 (marzec 2003): 61. http://dx.doi.org/10.1111/j.1535-7597.2003.03210.x.
Pełny tekst źródłaKucharz, Krzysztof, Tadeusz Wieloch i Håkan Toresson. "Rapid Fragmentation of the Endoplasmic Reticulum in Cortical Neurons of the Mouse Brain in situ Following Cardiac Arrest". Journal of Cerebral Blood Flow & Metabolism 31, nr 8 (6.04.2011): 1663–67. http://dx.doi.org/10.1038/jcbfm.2011.37.
Pełny tekst źródłaMalik, Ruchi, i Sumantra Chattarji. "Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons". Journal of Neurophysiology 107, nr 5 (1.03.2012): 1366–78. http://dx.doi.org/10.1152/jn.01009.2011.
Pełny tekst źródłaPrince, Luke Y., Travis Bacon, Rachel Humphries, Krasimira Tsaneva-Atanasova, Claudia Clopath i Jack R. Mellor. "Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits". PLOS Computational Biology 17, nr 10 (1.10.2021): e1009435. http://dx.doi.org/10.1371/journal.pcbi.1009435.
Pełny tekst źródłaDudek, F. Edward. "Are Altered Excitatory Synapses Found in Neuronal Migration Disorders?" Epilepsy Currents 5, nr 5 (wrzesień 2005): 171–73. http://dx.doi.org/10.1111/j.1535-7511.2005.00054.x.
Pełny tekst źródłaScott, Courtney A., John P. Rossiter, R. David Andrew i Alan C. Jackson. "Structural Abnormalities in Neurons Are Sufficient To Explain the Clinical Disease and Fatal Outcome of Experimental Rabies in Yellow Fluorescent Protein-Expressing Transgenic Mice". Journal of Virology 82, nr 1 (17.10.2007): 513–21. http://dx.doi.org/10.1128/jvi.01677-07.
Pełny tekst źródłaPoolos, Nicholas P. "H-Channels and Seizures: Less is More". Epilepsy Currents 5, nr 3 (maj 2005): 89–90. http://dx.doi.org/10.1111/j.1535-7511.2005.05302.x.
Pełny tekst źródłaBracke, Alexander, Grazyna Domanska, Katharina Bracke, Steffen Harzsch, Jens van den Brandt, Barbara Bröker i Oliver von Bohlen und Halbach. "Obesity Impairs Mobility and Adult Hippocampal Neurogenesis". Journal of Experimental Neuroscience 13 (styczeń 2019): 117906951988358. http://dx.doi.org/10.1177/1179069519883580.
Pełny tekst źródła