Artykuły w czasopismach na temat „Hippocampal CA3”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Hippocampal CA3”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ang, Mary Jasmin, Sueun Lee, Mai Wada, Poornima D. E. Weerasinghe-Mudiyanselage, Sung-Ho Kim, Taekyun Shin, Tae-Il Jeon, Seung-Soon Im i Changjong Moon. "SREBP-1c Deficiency Affects Hippocampal Micromorphometry and Hippocampus-Dependent Memory Ability in Mice". International Journal of Molecular Sciences 22, nr 11 (5.06.2021): 6103. http://dx.doi.org/10.3390/ijms22116103.
Pełny tekst źródłaŚwietlik, Dariusz, Jacek Białowąs, Janusz Moryś, Ilona Klejbor i Aida Kusiak. "Computer Modeling of Alzheimer’s Disease—Simulations of Synaptic Plasticity and Memory in the CA3-CA1 Hippocampal Formation Microcircuit". Molecules 24, nr 10 (17.05.2019): 1909. http://dx.doi.org/10.3390/molecules24101909.
Pełny tekst źródłaŚwietlik, Dariusz, Jacek Białowąs, Janusz Moryś, Ilona Klejbor i Aida Kusiak. "Effects of Inducing Gamma Oscillations in Hippocampal Subregions DG, CA3, and CA1 on the Potential Alleviation of Alzheimer’s Disease-Related Pathology: Computer Modeling and Simulations". Entropy 21, nr 6 (13.06.2019): 587. http://dx.doi.org/10.3390/e21060587.
Pełny tekst źródłaBlom, Kim, Huiberdina L. Koek, Maarten H. T. Zwartbol, Rashid Ghaznawi, Hugo J. Kuijf, Theo D. Witkamp, Jeroen Hendrikse, Geert Jan Biessels i Mirjam I. Geerlings. "Vascular Risk Factors of Hippocampal Subfield Volumes in Persons without Dementia: The Medea 7T Study". Journal of Alzheimer's Disease 77, nr 3 (29.09.2020): 1223–39. http://dx.doi.org/10.3233/jad-200159.
Pełny tekst źródłaZapukhliak, O. S., O. V. Netsyk i D. S. Isaev. "SYNCHRONIZATION OF EPILEPTIFORM ACTIVITY BETWEEN CA1 AND CA3 HIPPOCAMPAL FIELDS UNDER SYNAPTIC AND NON-SYNAPTIC CONDITIONS IN RAT BRAIN SLICES". Medical Science of Ukraine (MSU) 16, nr 1 (28.02.2020): 3–7. http://dx.doi.org/10.32345/2664-4738.1.2020.01.
Pełny tekst źródłaZapukhliak, Olha, Olga Netsyk, Artur Romanov, Oleksandr Maximyuk, Murat Oz, Gregory L. Holmes, Oleg Krishtal i Dmytro Isaev. "Mecamylamine inhibits seizure-like activity in CA1-CA3 hippocampus through antagonism to nicotinic receptors". PLOS ONE 16, nr 3 (12.03.2021): e0240074. http://dx.doi.org/10.1371/journal.pone.0240074.
Pełny tekst źródłaWu, Chiping, Marjan Nassiri Asl, Jesse Gillis, Frances K. Skinner i Liang Zhang. "An In Vitro Model of Hippocampal Sharp Waves: Regional Initiation and Intracellular Correlates". Journal of Neurophysiology 94, nr 1 (lipiec 2005): 741–53. http://dx.doi.org/10.1152/jn.00086.2005.
Pełny tekst źródłaNwaubani, P., A. Colasanti, M. Cercignani i A. Warner. "MRI Analysis: Optimization of parameters for diffusion MRI to enhance hippocampal subfield analysis and segmentation (Preliminary Data)". European Psychiatry 65, S1 (czerwiec 2022): S638. http://dx.doi.org/10.1192/j.eurpsy.2022.1637.
Pełny tekst źródłaStojanovic, Tamara, David Velarde Gamez, Gabor Jorrid Schuld, Daniel Bormann, Maureen Cabatic, Pavel Uhrin, Gert Lubec i Francisco J. Monje. "Age-Dependent and Pathway-Specific Bimodal Action of Nicotine on Synaptic Plasticity in the Hippocampus of Mice Lacking the miR-132/212 Genes". Cells 11, nr 2 (13.01.2022): 261. http://dx.doi.org/10.3390/cells11020261.
Pełny tekst źródłaDaugherty, Ana M., Hillary D. Schwarb, Matthew D. J. McGarry, Curtis L. Johnson i Neal J. Cohen. "Magnetic Resonance Elastography of Human Hippocampal Subfields: CA3-Dentate Gyrus Viscoelasticity Predicts Relational Memory Accuracy". Journal of Cognitive Neuroscience 32, nr 9 (wrzesień 2020): 1704–13. http://dx.doi.org/10.1162/jocn_a_01574.
Pełny tekst źródłaKreisman, Norman R., Soheil Soliman i David Gozal. "Regional Differences in Hypoxic Depolarization and Swelling in Hippocampal Slices". Journal of Neurophysiology 83, nr 2 (1.02.2000): 1031–38. http://dx.doi.org/10.1152/jn.2000.83.2.1031.
Pełny tekst źródłaShcherbak, N. S., G. Yu Yukina, A. G. Gurbo, E. G. Sukhorukova, A. G. Sargsian, V. V. Thomson i M. M. Galagudza. "Morphofunctional state of microglia and hippocampal neurons in aged rats after anesthesia with chloral hydrate". Regional blood circulation and microcirculation 21, nr 3 (12.10.2022): 64–71. http://dx.doi.org/10.24884/1682-6655-2022-21-3-64-71.
Pełny tekst źródłaSekino, Yuko, Kunihiko Obata, Manabu Tanifuji, Makoto Mizuno i Jin Murayama. "Delayed Signal Propagation via CA2 in Rat Hippocampal Slices Revealed by Optical Recording". Journal of Neurophysiology 78, nr 3 (1.09.1997): 1662–68. http://dx.doi.org/10.1152/jn.1997.78.3.1662.
Pełny tekst źródłaPang, Cindy Chi-Ching, Clemens Kiecker, John T. O’Brien, Wendy Noble i Raymond Chuen-Chung Chang. "Ammon’s Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration". Neuroscientist 25, nr 2 (5.06.2018): 167–80. http://dx.doi.org/10.1177/1073858418778747.
Pełny tekst źródłaSuthana, Nanthia A., Markus Donix, David R. Wozny, Adam Bazih, Michael Jones, Robin M. Heidemann, Robert Trampel i in. "High-resolution 7T fMRI of Human Hippocampal Subfields during Associative Learning". Journal of Cognitive Neuroscience 27, nr 6 (czerwiec 2015): 1194–206. http://dx.doi.org/10.1162/jocn_a_00772.
Pełny tekst źródłaChang, Payne Y., Portia E. Taylor i Meyer B. Jackson. "Voltage Imaging Reveals the CA1 Region at the CA2 Border as a Focus for Epileptiform Discharges and Long-Term Potentiation in Hippocampal Slices". Journal of Neurophysiology 98, nr 3 (wrzesień 2007): 1309–22. http://dx.doi.org/10.1152/jn.00532.2007.
Pełny tekst źródłaLiang, Xia, Li-Ming Hsu, Hanbing Lu, Jessica A. Ash, Peter R. Rapp i Yihong Yang. "Functional Connectivity of Hippocampal CA3 Predicts Neurocognitive Aging via CA1–Frontal Circuit". Cerebral Cortex 30, nr 8 (2.04.2020): 4297–305. http://dx.doi.org/10.1093/cercor/bhaa008.
Pełny tekst źródłaSegev, Amir, Masaya Yanagi, Daniel Scott, Sarah A. Southcott, Jacob M. Lister, Chunfeng Tan, Wei Li, Shari G. Birnbaum, Saïd Kourrich i Carol A. Tamminga. "Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors". Molecular Psychiatry 25, nr 11 (23.07.2018): 2832–43. http://dx.doi.org/10.1038/s41380-018-0124-3.
Pełny tekst źródłaFujii, Takeshi, Yasushi Kuraishi, Toshikazu Okada i Masamichi Satoh. "Bifemelane induces translocation of protein kinase C in the CA3, but not the CA1, region of guinea-pig hippocampus". Canadian Journal of Physiology and Pharmacology 68, nr 3 (1.03.1990): 413–18. http://dx.doi.org/10.1139/y90-058.
Pełny tekst źródłaJordan, Jake T., Yi Tong i Carolyn L. Pytte. "Transection of the ventral hippocampal commissure impairs spatial reference but not contextual or spatial working memory". Learning & Memory 29, nr 1 (15.12.2021): 29–37. http://dx.doi.org/10.1101/lm.053483.121.
Pełny tekst źródłaWu, Chiping, Wah Ping Luk, Jesse Gillis, Frances Skinner i Liang Zhang. "Size Does Matter: Generation of Intrinsic Network Rhythms in Thick Mouse Hippocampal Slices". Journal of Neurophysiology 93, nr 4 (kwiecień 2005): 2302–17. http://dx.doi.org/10.1152/jn.00806.2004.
Pełny tekst źródłaLau, JC, J. DeKraker, KW MacDougall, H. Joswig, AG Parrent, JG Burneo, DA Steven, TM Peters i AR Khan. "P.063 Stereotactic targeting of hippocampal substructures using ultra-high field magnetic resonance imaging: Feasibility study in patients with epilepsy". Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 45, s2 (czerwiec 2018): S32—S33. http://dx.doi.org/10.1017/cjn.2018.165.
Pełny tekst źródłaColom, L. V., i P. Saggau. "Spontaneous interictal-like activity originates in multiple areas of the CA2-CA3 region of hippocampal slices". Journal of Neurophysiology 71, nr 4 (1.04.1994): 1574–85. http://dx.doi.org/10.1152/jn.1994.71.4.1574.
Pełny tekst źródłaZheng, Yicong, Xiaonan L. Liu, Satoru Nishiyama, Charan Ranganath i Randall C. O’Reilly. "Correcting the hebbian mistake: Toward a fully error-driven hippocampus". PLOS Computational Biology 18, nr 10 (11.10.2022): e1010589. http://dx.doi.org/10.1371/journal.pcbi.1010589.
Pełny tekst źródłaHamadi, Naserddine, Ömür Gülsüm Deniz, Ahlam Said Abi Issa, Azim Ullah Shamsul Islam, Naheed Amir, Saeed Tariq Minhas, Nather Madjid, Fatima Khelifi-Touhami, Süleyman Kaplan i Abdu Adem. "Stereological Evidence of Non-Selective Hippocampal Neurodegeneration, IGF-1 Depletion, and Behavioral Deficit following Short Term Bilateral Adrenalectomy in Wistar Rats". Biomolecules 13, nr 1 (22.12.2022): 22. http://dx.doi.org/10.3390/biom13010022.
Pełny tekst źródłavan der Veldt, Suzanne, Guillaume Etter, Coralie-Anne Mosser, Frédéric Manseau i Sylvain Williams. "Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum". PLOS Biology 19, nr 8 (30.08.2021): e3001383. http://dx.doi.org/10.1371/journal.pbio.3001383.
Pełny tekst źródłaBuss, Eric W., Nicola J. Corbett, Joshua G. Roberts, Natividad Ybarra, Timothy F. Musial, Dina Simkin, Elizabeth Molina-Campos i in. "Cognitive aging is associated with redistribution of synaptic weights in the hippocampus". Proceedings of the National Academy of Sciences 118, nr 8 (16.02.2021): e1921481118. http://dx.doi.org/10.1073/pnas.1921481118.
Pełny tekst źródłaD'Antuono, Margherita, Ruba Benini, Giuseppe Biagini, Giovanna D'Arcangelo, Michaela Barbarosie, Virginia Tancredi i Massimo Avoli. "Limbic Network Interactions Leading to Hyperexcitability in a Model of Temporal Lobe Epilepsy". Journal of Neurophysiology 87, nr 1 (1.01.2002): 634–39. http://dx.doi.org/10.1152/jn.00351.2001.
Pełny tekst źródłaRos, Jacqueline, Luc Pellerin, Fulvio Magara, Julien Dauguet, Françoise Schenk i Pierre J. Magistretti. "Metabolic Activation Pattern of Distinct Hippocampal Subregions during Spatial Learning and Memory Retrieval". Journal of Cerebral Blood Flow & Metabolism 26, nr 4 (31.08.2005): 468–77. http://dx.doi.org/10.1038/sj.jcbfm.9600208.
Pełny tekst źródłaWicks, Robert T., Mark R. Witcher, Daniel E. Couture, Adrian W. Laxton, Gautam Popli, Christopher T. Whitlow, Dustin Fetterhoff i in. "Hippocampal CA1 and CA3 neural recording in the human brain: validation of depth electrode placement through high-resolution imaging and electrophysiology". Neurosurgical Focus 49, nr 1 (lipiec 2020): E5. http://dx.doi.org/10.3171/2020.4.focus20164.
Pełny tekst źródłaKubota, Don, Laura Lee Colgin, Malcolm Casale, Fernando A. Brucher i Gary Lynch. "Endogenous Waves in Hippocampal Slices". Journal of Neurophysiology 89, nr 1 (1.01.2003): 81–89. http://dx.doi.org/10.1152/jn.00542.2002.
Pełny tekst źródłaHsiao, Yi-Tse, Chenguang Zheng i Laura Lee Colgin. "Slow gamma rhythms in CA3 are entrained by slow gamma activity in the dentate gyrus". Journal of Neurophysiology 116, nr 6 (1.12.2016): 2594–603. http://dx.doi.org/10.1152/jn.00499.2016.
Pełny tekst źródłaSun, Wei, Xuanyin Zhao, Yiwen Wan, Yang Yang, Xiaoliang Li, Xiao Chen, Yazi Mei i Lei An. "Prenatal cyanuric acid exposure induced spatial learning impairments associated with alteration of acetylcholine-mediated neural information flow at the hippocampal CA3-CA1 synapses of male rats". Human & Experimental Toxicology 42 (8.03.2023): 096032712311634. http://dx.doi.org/10.1177/09603271231163477.
Pełny tekst źródłaStokes, Jared, Colin Kyle i Arne D. Ekstrom. "Complementary Roles of Human Hippocampal Subfields in Differentiation and Integration of Spatial Context". Journal of Cognitive Neuroscience 27, nr 3 (marzec 2015): 546–59. http://dx.doi.org/10.1162/jocn_a_00736.
Pełny tekst źródłaTole, S., C. Christian i E. A. Grove. "Early specification and autonomous development of cortical fields in the mouse hippocampus". Development 124, nr 24 (15.12.1997): 4959–70. http://dx.doi.org/10.1242/dev.124.24.4959.
Pełny tekst źródłaTallent, Melanie K., i George R. Siggins. "Somatostatin Acts in CA1 and CA3 to Reduce Hippocampal Epileptiform Activity". Journal of Neurophysiology 81, nr 4 (1.04.1999): 1626–35. http://dx.doi.org/10.1152/jn.1999.81.4.1626.
Pełny tekst źródłaEom, Kisang. "Partial EC outputs by degraded cues are amplified in hippocampal CA3 circuits for retrieving stored patterns". PLOS ONE 18, nr 4 (19.04.2023): e0281458. http://dx.doi.org/10.1371/journal.pone.0281458.
Pełny tekst źródłaCiufolini, Simone, Matthew Kempton, Charlotte Gayer-Anderson, Heather Taylor, Tiago Reis Marques, Helen Fisher, Marta Di Forti i in. "S186. THE EFFECTS OF CHILDHOOD TRAUMA ON HIPPOCAMPAL VOLUME IN FIRST EPISODE PSYCHOSIS: DOES CORTISOL PLAY A ROLE?" Schizophrenia Bulletin 46, Supplement_1 (kwiecień 2020): S109. http://dx.doi.org/10.1093/schbul/sbaa031.252.
Pełny tekst źródłaLin, Xiaoxiao, Michelle Amalraj, Crisylle Blanton, Brenda Avila, Todd C. Holmes, Douglas A. Nitz i Xiangmin Xu. "Noncanonical projections to the hippocampal CA3 regulate spatial learning and memory by modulating the feedforward hippocampal trisynaptic pathway". PLOS Biology 19, nr 12 (20.12.2021): e3001127. http://dx.doi.org/10.1371/journal.pbio.3001127.
Pełny tekst źródłaRutecki, Paul A., Robert G. Grossman, Dawna Armstrong i Susan Irish-Loewen. "Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures". Journal of Neurosurgery 70, nr 5 (maj 1989): 667–75. http://dx.doi.org/10.3171/jns.1989.70.5.0667.
Pełny tekst źródłaLi, Guomin, Xuezhu Zhang, Haiyan Cheng, Xuemei Shang, Hui Xie, Xin Zhang, Jianchun Yu i Jingxian Han. "Acupuncture Improves Cognitive Deficits and Increases Neuron Density of the Hippocampus in Middle-Aged Samp8 Mice". Acupuncture in Medicine 30, nr 4 (grudzień 2012): 339–45. http://dx.doi.org/10.1136/acupmed-2012-010180.
Pełny tekst źródłaTønder, Niels, Flemming F. Johansen, Jens Zimmer i Nils H. Diemer. "The Susceptibility of CA1 Pyramidal Cells to Cerebral Ischemia is Maintained after Neonatal, Lesion-Induced Reorganization of the Hippocampal Circuitry". Journal of Cerebral Blood Flow & Metabolism 14, nr 3 (maj 1994): 391–96. http://dx.doi.org/10.1038/jcbfm.1994.50.
Pełny tekst źródłaBickler, Philip E., Xinhua Zhan i Christian S. Fahlman. "Isoflurane Preconditions Hippocampal Neurons against Oxygen–Glucose Deprivation". Anesthesiology 103, nr 3 (1.09.2005): 532–39. http://dx.doi.org/10.1097/00000542-200509000-00016.
Pełny tekst źródłaDai, Yaling, Yuhao Zhang, Minguang Yang, Huawei Lin, Yulu Liu, Wenshan Xu, Yanyi Ding, Jing Tao i Weilin Liu. "Electroacupuncture Increases the Hippocampal Synaptic Transmission Efficiency and Long-Term Plasticity to Improve Vascular Cognitive Impairment". Mediators of Inflammation 2022 (23.06.2022): 1–15. http://dx.doi.org/10.1155/2022/5985143.
Pełny tekst źródłaSAMURA, TOSHIKAZU, i MOTONOBU HATTORI. "HIPPOCAMPAL MEMORY MODIFICATION INDUCED BY PATTERN COMPLETION AND SPIKE-TIMING DEPENDENT SYNAPTIC PLASTICITY". International Journal of Neural Systems 15, nr 01n02 (luty 2005): 13–22. http://dx.doi.org/10.1142/s0129065705000025.
Pełny tekst źródłaSuwabe, Kazuya, Kyeongho Byun, Kazuki Hyodo, Zachariah M. Reagh, Jared M. Roberts, Akira Matsushita, Kousaku Saotome i in. "Rapid stimulation of human dentate gyrus function with acute mild exercise". Proceedings of the National Academy of Sciences 115, nr 41 (24.09.2018): 10487–92. http://dx.doi.org/10.1073/pnas.1805668115.
Pełny tekst źródłaSeress, László, Hajnalka Ábrahám, Zsolt Horváth, Tamás Dóczi, József Janszky, Joyce Klemm, Richard Byrne i Roy A. E. Bakay. "Survival of mossy cells of the hippocampal dentate gyrus in humans with mesial temporal lobe epilepsy". Journal of Neurosurgery 111, nr 6 (grudzień 2009): 1237–47. http://dx.doi.org/10.3171/2008.11.jns08779.
Pełny tekst źródłaZilli, Jessica, Anne Schänzer, Kathrin Büttner, Monika Kressin i Martin J. Schmidt. "Quantitative and qualitative evaluation of the hippocampal cytoarchitecture in adult cats with regard to the pathological diagnosis of hippocampal sclerosis". PLOS ONE 17, nr 5 (13.05.2022): e0268010. http://dx.doi.org/10.1371/journal.pone.0268010.
Pełny tekst źródłaRadenovic, Lidija, Vesna Selakovic, A. Bajic i P. R. Andjus. "Use of confocal microscopy in the study of ischemia-induced hippocampal neuronal damage". Archives of Biological Sciences 60, nr 4 (2008): 561–65. http://dx.doi.org/10.2298/abs0804561r.
Pełny tekst źródłaWagatsuma, Akiko, Teruhiro Okuyama, Chen Sun, Lillian M. Smith, Kuniya Abe i Susumu Tonegawa. "Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context". Proceedings of the National Academy of Sciences 115, nr 2 (26.12.2017): E310—E316. http://dx.doi.org/10.1073/pnas.1714082115.
Pełny tekst źródła