Artykuły w czasopismach na temat „High Weissenberg number problem”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „High Weissenberg number problem”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Keunings, Roland. "On the high Weissenberg number problem". Journal of Non-Newtonian Fluid Mechanics 20 (styczeń 1986): 209–26. http://dx.doi.org/10.1016/0377-0257(86)80022-2.
Pełny tekst źródłaTrebotich, David. "Toward a solution to the high Weissenberg number problem". PAMM 7, nr 1 (grudzień 2007): 2100073–74. http://dx.doi.org/10.1002/pamm.200700989.
Pełny tekst źródłaEvans, J. D. "Re-entrant corner flows of upper convected Maxwell fluids: the small and high Weissenberg number limits". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, nr 2076 (21.07.2006): 3749–74. http://dx.doi.org/10.1098/rspa.2006.1737.
Pełny tekst źródłaMohamadali, Meysam, i Nariman Ashrafi. "Similarity Solution for High Weissenberg Number Flow of Upper-Convected Maxwell Fluid on a Linearly Stretching Sheet". Journal of Engineering 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/9718786.
Pełny tekst źródłaTANOUE, Shuichi, Jiro KOGA, Toshihisa KAJIWARA, Yoshiyuki IEMOTO i Kazumori FUNATSU. "High Weissenberg Number Problem and Numerical Simulation of an Annular Extrudate Swell of Viscoelastic Fluids." Seikei-Kakou 9, nr 10 (1997): 817–24. http://dx.doi.org/10.4325/seikeikakou.9.817.
Pełny tekst źródłaBielça Silva, Luciene Aparecida, i Messias Meneguette. "Log-Conformation Representation of Hiperbolic Conservation Laws with Source Term". TEMA (São Carlos) 15, nr 3 (27.01.2014): 293. http://dx.doi.org/10.5540/tema.2014.015.03.0293.
Pełny tekst źródłaRenardy, Michael. "The initial value problem for creeping flow of the upper convected Maxwell fluid at high Weissenberg number". Mathematical Methods in the Applied Sciences 38, nr 5 (17.03.2014): 959–65. http://dx.doi.org/10.1002/mma.3121.
Pełny tekst źródłaVarchanis, S., A. Syrakos, Y. Dimakopoulos i J. Tsamopoulos. "A new finite element formulation for viscoelastic flows: Circumventing simultaneously the LBB condition and the high-Weissenberg number problem". Journal of Non-Newtonian Fluid Mechanics 267 (maj 2019): 78–97. http://dx.doi.org/10.1016/j.jnnfm.2019.04.003.
Pełny tekst źródłaAbedijaberi, A., i B. Khomami. "Continuum and multi-scale simulation of mixed kinematics polymeric flows with stagnation points: Closure approximation and the high Weissenberg number problem". Journal of Non-Newtonian Fluid Mechanics 166, nr 11 (czerwiec 2011): 533–45. http://dx.doi.org/10.1016/j.jnnfm.2011.03.001.
Pełny tekst źródłaAFONSO, A. M., P. J. OLIVEIRA, F. T. PINHO i M. A. ALVES. "Dynamics of high-Deborah-number entry flows: a numerical study". Journal of Fluid Mechanics 677 (13.04.2011): 272–304. http://dx.doi.org/10.1017/jfm.2011.84.
Pełny tekst źródłaShah, Syed Amir Ghazi Ali, Ali Hassan, Najah Alsubaie, Abdullah Alhushaybari, Fahad M. Alharbi, Ahmed M. Galal, Diana-Petronela Burduhos-Nergis i Costica Bejinariu. "Convective Heat Transfer in Magneto-Hydrodynamic Carreau Fluid with Temperature Dependent Viscosity and Thermal Conductivity". Nanomaterials 12, nr 22 (20.11.2022): 4084. http://dx.doi.org/10.3390/nano12224084.
Pełny tekst źródłaWang. "Reynolds Stress Model for Viscoelastic Drag-Reducing Flow Induced by Polymer Solution". Polymers 11, nr 10 (11.10.2019): 1659. http://dx.doi.org/10.3390/polym11101659.
Pełny tekst źródłaAbedijaberi, A., i B. Khomami. "Sedimentation of a sphere in a viscoelastic fluid: a multiscale simulation approach". Journal of Fluid Mechanics 694 (18.01.2012): 78–99. http://dx.doi.org/10.1017/jfm.2011.504.
Pełny tekst źródłaZhurba Eremeeva, I. A., D. Scerrato, C. Cardillo i A. Tran. "A MATHEMATICAL MODEL OF NONSTATIONARY MOTION OF A VISCOELASTIC FLUID IN ROLLER BEARINGS". Problems of strenght and plasticity 81, nr 4 (2019): 500–511. http://dx.doi.org/10.32326/1814-9146-2019-81-4-500-511.
Pełny tekst źródłaZhurba Eremeeva, I. A., D. Scerrato, C. Cardillo i A. Tran. "A MATHEMATICAL MODEL OF NONSTATIONARY MOTION OF A VISCOELASTIC FLUID IN ROLLER BEARINGS". Problems of strenght and plasticity 81, nr 4 (2019): 501–12. http://dx.doi.org/10.32326/1814-9146-2019-81-4-501-512.
Pełny tekst źródłaMavi, Anele, i Tiri Chinyoka. "Finite Volume Computational Analysis of the Heat Transfer Characteristic in a Double-Cylinder Counter-Flow Heat Exchanger with Viscoelastic Fluids". Defect and Diffusion Forum 424 (8.05.2023): 19–43. http://dx.doi.org/10.4028/p-j482zy.
Pełny tekst źródłaPogrebnyak, Volodymyr G., Volodymyr Y. Shimanskii, Andriy V. Pogrebnyak i Iryna V. Perkun. "Viscoelastic effects under water-polymer flooding conditions of the fractured-porous reservoir". Nafta-Gaz 79, nr 7 (lipiec 2023): 455–63. http://dx.doi.org/10.18668/ng.2023.07.02.
Pełny tekst źródłaHao, Jian, i Tsorng-Whay Pan. "Simulation for high Weissenberg number". Applied Mathematics Letters 20, nr 9 (wrzesień 2007): 988–93. http://dx.doi.org/10.1016/j.aml.2006.12.003.
Pełny tekst źródłaXi, Li, i Michael D. Graham. "Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows". Journal of Fluid Mechanics 693 (17.01.2012): 433–72. http://dx.doi.org/10.1017/jfm.2011.541.
Pełny tekst źródłaDavoodi, Mahdi, Allysson F. Domingues i Robert J. Poole. "Control of a purely elastic symmetry-breaking flow instability in cross-slot geometries". Journal of Fluid Mechanics 881 (28.10.2019): 1123–57. http://dx.doi.org/10.1017/jfm.2019.781.
Pełny tekst źródłaGOTO, Ikuhisa, Hikaru WAKI, Shuichi IWATA, Hideki MORI i Tsutomu ARAGAKI. "Numerical analysis of viscoelastic flow at high Weissenberg number". Proceedings of the Fluids engineering conference 2000 (2000): 155. http://dx.doi.org/10.1299/jsmefed.2000.155.
Pełny tekst źródłaMiller, Joel C., i J. M. Rallison. "Instability of coextruded elastic liquids at high Weissenberg number". Journal of Non-Newtonian Fluid Mechanics 143, nr 2-3 (maj 2007): 88–106. http://dx.doi.org/10.1016/j.jnnfm.2007.01.008.
Pełny tekst źródłaEvans, J. D. "High Weissenberg number boundary layer structures for UCM fluids". Applied Mathematics and Computation 387 (grudzień 2020): 124952. http://dx.doi.org/10.1016/j.amc.2019.124952.
Pełny tekst źródłaSobh, Ayman Mahmoud. "Slip flow in peristaltic transport of a Carreau fluid in an asymmetric channel". Canadian Journal of Physics 87, nr 8 (sierpień 2009): 957–65. http://dx.doi.org/10.1139/p09-027.
Pełny tekst źródłaLin, Che-Yu, i Chao-An Lin. "Direct Numerical Simulations of Turbulent Channel Flow With Polymer Additives". Journal of Mechanics 36, nr 5 (6.08.2020): 691–98. http://dx.doi.org/10.1017/jmech.2020.34.
Pełny tekst źródłaGuo, Shihan, i Xinhui Si. "Parametric study of the Giesekus fluid flow in a curved duct with square cross section". Physics of Fluids 34, nr 10 (październik 2022): 103107. http://dx.doi.org/10.1063/5.0119071.
Pełny tekst źródłaHenry, Christopher K., Giuseppe R. Palmese i Nicolas J. Alvarez. "The evolution of crystalline structures during gel spinning of ultra-high molecular weight polyethylene fibers". Soft Matter 14, nr 44 (2018): 8974–85. http://dx.doi.org/10.1039/c8sm01597j.
Pełny tekst źródłaRenardy, Michael. "High weissenberg number boundary layers for the upper convected Maxwell fluid". Journal of Non-Newtonian Fluid Mechanics 68, nr 1 (styczeń 1997): 125–32. http://dx.doi.org/10.1016/s0377-0257(96)01491-7.
Pełny tekst źródłaTsai, Tai-Ping, i David S. Malkus. "Numerical breakdown at high Weissenberg number in non-Newtonian contraction flows". Rheologica Acta 39, nr 1 (14.01.2000): 62–70. http://dx.doi.org/10.1007/s003970050007.
Pełny tekst źródłaErvin, Vincent J., i Hyesuk Lee. "Defect correction method for viscoelastic fluid flows at high Weissenberg number". Numerical Methods for Partial Differential Equations 22, nr 1 (2005): 145–64. http://dx.doi.org/10.1002/num.20090.
Pełny tekst źródłaElshehawey, Elsayed F., i Ayman M. F. Sobh. "Peristaltic viscoelastic fluid motion in a tube". International Journal of Mathematics and Mathematical Sciences 26, nr 1 (2001): 21–34. http://dx.doi.org/10.1155/s0161171201003556.
Pełny tekst źródłaRenardy, Michael. "On the high Weissenberg number limit of the upper convected Maxwell fluid". Journal of Non-Newtonian Fluid Mechanics 165, nr 1-2 (styczeń 2010): 70–74. http://dx.doi.org/10.1016/j.jnnfm.2009.10.001.
Pełny tekst źródłaSTOKES, JASON R., LACHLAN J. W. GRAHAM, NICK J. LAWSON i DAVID V. BOGER. "Swirling flow of viscoelastic fluids. Part 2. Elastic effects". Journal of Fluid Mechanics 429 (25.02.2001): 117–53. http://dx.doi.org/10.1017/s0022112000002901.
Pełny tekst źródłaZaman, Akbar, M. Sajid i Nabeela Kousar. "Biomedical study of effects nanoparticles on unsteady blood (non-Newtonian) flow through a catheterized stenotic vessel". Canadian Journal of Physics 97, nr 5 (maj 2019): 487–97. http://dx.doi.org/10.1139/cjp-2018-0376.
Pełny tekst źródłaRenardy, Michael. "The high Weissenberg number limit of the UCM model and the Euler equations". Journal of Non-Newtonian Fluid Mechanics 69, nr 2-3 (kwiecień 1997): 293–301. http://dx.doi.org/10.1016/s0377-0257(96)01544-3.
Pełny tekst źródłaKadyirov, A. I., i E. K. Vachagina. "Semi-analytical solution for the problem of extended Pom-Pom fluid flow in a round pipe". Journal of Physics: Conference Series 2057, nr 1 (1.10.2021): 012007. http://dx.doi.org/10.1088/1742-6596/2057/1/012007.
Pełny tekst źródłaAli, Hashim, i Masood Khan. "Impact of heat transfer analysis on Carreau fluid-flow past a static/moving wedge". Thermal Science 22, nr 2 (2018): 809–20. http://dx.doi.org/10.2298/tsci160115169a.
Pełny tekst źródłaSasmal, C. "Effect of micelle breaking rate and wall slip on unsteady motion past a sphere translating steadily in wormlike micellar solutions". Physics of Fluids 34, nr 7 (lipiec 2022): 073110. http://dx.doi.org/10.1063/5.0096602.
Pełny tekst źródłaFeng, J. Feng, D. D. Joseph, R. Glowinski i T. W. Pan. "A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid". Journal of Fluid Mechanics 283 (25.01.1995): 1–16. http://dx.doi.org/10.1017/s0022112095002217.
Pełny tekst źródłaKing, J. R. C., i S. J. Lind. "High Weissenberg number simulations with incompressible Smoothed Particle Hydrodynamics and the log-conformation formulation". Journal of Non-Newtonian Fluid Mechanics 293 (lipiec 2021): 104556. http://dx.doi.org/10.1016/j.jnnfm.2021.104556.
Pełny tekst źródłaMahdy, A., i Ali J. Chamkha. "Unsteady MHD boundary layer flow of tangent hyperbolic two-phase nanofluid of moving stretched porous wedge". International Journal of Numerical Methods for Heat & Fluid Flow 28, nr 11 (5.11.2018): 2567–80. http://dx.doi.org/10.1108/hff-12-2017-0499.
Pełny tekst źródłaNimura, Tomohiro, i Takahiro Tsukahara. "Viscoelasticity-Induced Instability in Plane Couette Flow at Very Low Reynolds Number". Fluids 7, nr 7 (13.07.2022): 241. http://dx.doi.org/10.3390/fluids7070241.
Pełny tekst źródłaKhan, Muhammad Rehan, Khuram Javid i Muhammad Muddassar Javed. "Asymptotic Analysis of Peristaltic Hydromagnetic Flow of Carreau Fluid in a Curved Channel". Siazga Research Journal 1, nr 1 (30.09.2022): 28–42. http://dx.doi.org/10.58341/srj.v1i1.2.
Pełny tekst źródłaKhan, Muhammad Rehan, Khuram Javid i Muhammad Muddassar Javed. "Asymptotic Analysis of Peristaltic Hydromagnetic Flow of Carreau Fluid in a Curved Channel". Siazga Research Journal 1, nr 1 (30.09.2022): 28–42. http://dx.doi.org/10.58341/srj.v1i1.9.
Pełny tekst źródłaRenardy, Michael. "Asymptotic structure of the stress field in flow past a cylinder at high Weissenberg number". Journal of Non-Newtonian Fluid Mechanics 90, nr 1 (kwiecień 2000): 13–23. http://dx.doi.org/10.1016/s0377-0257(99)00050-6.
Pełny tekst źródłaGOTO, Ikuhisa, Tomomi HAYAKAWA, Hikaru WAKI, Shuichi IWATA, Hideki MORI i Tsutomu ARAGAKI. "K-1210 Numerical Techniques Improving Convergence Behavior of Viscoelastic Flow Analysis at High Weissenberg Number". Proceedings of the JSME annual meeting II.01.1 (2001): 83–84. http://dx.doi.org/10.1299/jsmemecjo.ii.01.1.0_83.
Pełny tekst źródłaFattal, Raanan, i Raz Kupferman. "Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation". Journal of Non-Newtonian Fluid Mechanics 126, nr 1 (luty 2005): 23–37. http://dx.doi.org/10.1016/j.jnnfm.2004.12.003.
Pełny tekst źródłaTanoue, Shuichi, Toshihisa Kajiwara, Yoshiyuki Iemoto i Kazumori Funatsu. "High weissenberg number simulation of an annular extrudate swell using the differential type constitutive equation". Polymer Engineering & Science 38, nr 3 (marzec 1998): 409–19. http://dx.doi.org/10.1002/pen.10202.
Pełny tekst źródłaNadeem, Sohail, i Noreen Sher Akbar. "Series Solutions for the Peristaltic Flow of a Tangent Hyperbolic Fluid in a Uniform Inclined Tube". Zeitschrift für Naturforschung A 65, nr 11 (1.11.2010): 887–95. http://dx.doi.org/10.1515/zna-2010-1101.
Pełny tekst źródłaRusak, Zvi, Nguyen Ly, John A. Tichy i Shixiao Wang. "Near-critical swirling flow of a viscoelastic fluid in a circular pipe". Journal of Fluid Mechanics 814 (6.02.2017): 325–60. http://dx.doi.org/10.1017/jfm.2017.16.
Pełny tekst źródła