Gotowa bibliografia na temat „High voltage insulating”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „High voltage insulating”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "High voltage insulating"
Park, Herie, Dong-Young Lim i Sungwoo Bae. "Surface Discharge Mechanism on Epoxy Resin in Electronegative Gases and Its Application". Applied Sciences 10, nr 19 (24.09.2020): 6673. http://dx.doi.org/10.3390/app10196673.
Pełny tekst źródłaZhang, Guangquan, Xueqin Zhang, Bo Wang, Yujun Guo, Guoqiang Gao i Guangning Wu. "Study on the Discharge Characteristics along the Surface and Charge Movement Characteristics of Insulating Media in an Airflow Environment". Energies 15, nr 10 (18.05.2022): 3706. http://dx.doi.org/10.3390/en15103706.
Pełny tekst źródłaLi, Chao, Lin Lin i Weidong Qu. "Study on insulation performance optimization of EMU high-voltage equipment box". Journal of Physics: Conference Series 2195, nr 1 (1.02.2022): 012040. http://dx.doi.org/10.1088/1742-6596/2195/1/012040.
Pełny tekst źródłaHayashi, Toshihiko, Toru Izumi, Tetsuro Hemmi i Katsunori Asano. "Insulating Properties of Package for Ultrahigh-Voltage, High-Temperature Devices". Materials Science Forum 740-742 (styczeń 2013): 1036–39. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.1036.
Pełny tekst źródłaRozga, Pawel, i Abderahhmane Beroual. "High Voltage Insulating Materials—Current State and Prospects". Energies 14, nr 13 (25.06.2021): 3799. http://dx.doi.org/10.3390/en14133799.
Pełny tekst źródłaGuo, Gang, Hongda Li, Mingcheng Gao i Long Che. "Numerical simulation of the breakdown process of dielectric in high voltage pulse discharge". Journal of Physics: Conference Series 2479, nr 1 (1.04.2023): 012009. http://dx.doi.org/10.1088/1742-6596/2479/1/012009.
Pełny tekst źródłaTian, Chen, Zhiping Zhu, Jianping Liao, Zhifeng Liu, Fan Gao, Yufei Chen i Zhenggang Wang. "The study of the electrical properties of nano insulating oil for submarine cables". E3S Web of Conferences 522 (2024): 01019. http://dx.doi.org/10.1051/e3sconf/202452201019.
Pełny tekst źródłaRafiq, Muhammad, Muhammad Shafique, Anam Azam, Muhammad Ateeq, Israr Ahmad Khan i Abid Hussain. "Sustainable, Renewable and Environmental-Friendly Insulation Systems for High Voltages Applications". Molecules 25, nr 17 (27.08.2020): 3901. http://dx.doi.org/10.3390/molecules25173901.
Pełny tekst źródłaZhorniak, Liudmyla, Alexej Afanasiev, Vitaliy Schus i Oleksandr Levchenko. "To the problem of the shielding systems efficiency in constructions of extra-high voltage electrical apparatus". Bulletin of NTU "KhPI". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice, nr 1 (11) (23.07.2024): 3–9. http://dx.doi.org/10.20998/2079-3944.2024.1.01.
Pełny tekst źródłaMukherjee, Shubhankan, Adhir Baran Chattopadhyay i Sunil Thomas. "Electrostatic field theoretic approach to analyze the partial discharge phenomenon pertaining to insulation degradation". International Journal of Engineering & Technology 7, nr 2 (1.06.2018): 842. http://dx.doi.org/10.14419/ijet.v7i2.12095.
Pełny tekst źródłaRozprawy doktorskie na temat "High voltage insulating"
Rux, Lorelynn Mary. "The physical phenomena associated with stator winding insulation condition as detected by the ramped direct high-voltage method". Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-04042004-112949.
Pełny tekst źródłaHuldén, Pierre. "Conductivity measurement on thick insulating plaque samples". Thesis, KTH, Elektroteknisk teori och konstruktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150956.
Pełny tekst źródłaDen elektriska konduktiviteten är en av de viktigaste egenskaperna av HVDC kablars isolationsmaterial, XLPE, och den måste utvärderas noggrant. Mätning på fullskaliga kablar är tidskrävande och för att jämföra material används istället ofta tunna prover och normerade konduktivitetmätningsceller. En nackdel med denna metod är att bulkeffekterna blir mindre framträdande i mätningen och resultaten kommer att vara mindre representativa. Istället måste man utföra mätningen på tjockare prover och vid högre spänning. Detta examensarbete fokuserar på mätning av ledningsförmåga hos tjocka HVDC- isolationsprover under noggrant kontrollerade förhållanden och starka elektriska fält. I litteraturen finns det många olika metoder att mäta läckströmmar på, till exempel dielektrisk spektroskopi, PD, IV och PEA mätningar för att nämna några. I denna avhandling kommer ett tre-elektrod system att användas där en temperatursensor är monterad på ena elektroden. Systemet används för att både mäta läckströmmar och temperatur vid provet. Detta gör det möjligt att kontrollera temperatur och spänning oberoende av varandra vilket gjordes med hjälp av två Labview program. Det ena för att skapa ett schema och det andra användes som kontrollprogram för att styra utrustningen i cellen. Uppgiften var att kontrollera cellens funktion genom att erhålla rimliga repeterbara mätningar. Mätningarna gav rimliga resultat vilket indikerade att cellen fungerar tillfredställande. Syftet med mätningarna var att få en bättre förståelse för felfaktorer i mätsystemet som kan vara allt från att förbereda provet till att mäta läckström. Syftet med cellen är att undersöka isolationsegenskaperna på millimetertjocka pressade XLPE prover.
Zavattoni, Laëtitia. "Conduction phenomena through gas and insulating solids in HVDC gas insulated substations, and consequences on electric field distribution". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT063/document.
Pełny tekst źródłaThe emergence of renewable energy leads to a development of new technologies for energy distribution across long distances. The latter will be based on High Voltage Direct Current (HVDC) to avoid capacitance losses. This network is interconnected using Gas Insulated Substation (GIS), which insulation is composed of pressurized gas (SF6) and solid insulators (epoxy resin), which have to withstand HVDC. The electric field is not anymore determined by permittivity of materials, but by resistivities and charge accumulation. In the case of an insulator with an interface with gas, electrons or ions will move across electric field lines and will charge the surface of the solid insulator. The behavior of insulator's properties (gas and solid) constitutes a major challenge for the development of HVDC GIS, to understand the charge relaxation/accumulation mechanisms.In this work, the characterization of solid insulator has first been investigated, based on a low-noise current measurement method. It is thus possible to measure the leakage current through samples and onto their surface, in a pressurized gas, at high electric field and for different temperatures. Those measurements permit to evidence that both volume and surface resistivities are strongly impacted by the increase of temperature and water concentration. It has also been shown that surface resistivity has a non-linear behavior with electric field. A numerical model was developed, to simulate experimental results, showing that the surface properties of the insulator can be implemented.Furthermore, the insulating properties of the gas were also investigated through different electric field geometry (coaxial and uniform), in order to estimate the contribution of current through gas on the charge accumulated on solid insulators. It has been found that a non-negligible current passes through the gas (~pA to nA). To determine the mechanisms responsible for such currents, the latter has been characterized depending on several parameters (electrode surface roughness, material nature, electric field, temperature and relative humidity). It revealed that the variations of currents are strongly impacted by the conditioning of the device and thus by the relative humidity adsorbed on electrodes and enclosure surfaces. In presence of a dry system (dry gas and device) low current were measured (~pA), which increases with temperature. On the contrary, in case of a “wet” system (humid gas and device) the current decreases with increasing temperature. Those results combined with the influence of the electrode roughness, strongly suggest a mechanism of charge injection at the electrode surface, enhanced by water adsorption.Finally, the results obtained for both solid and gaseous insulations are used to develop a numerical model with a shape close to the industrial application, and observe the modification of electric field distribution in presence of water concentration and temperature gradient. An estimation of current flowing through the insulator and gas is thus possible in case of uniform and gradient temperature.In conclusion, this work gives the variations of both volume and surface resistivities in an epoxy resin with temperature and electric field. It also evidences the major influence of relative humidity and temperature on charge injection mechanisms which contribute to the current measured through gas. The extensive characterization performed, enables to develop a simulation which predicts the variations of electric field distribution within an HVDC GIS
Yahyaoui, Hanen. "Matériaux isolants pour appareillages haute tension dans le domaine du courant continu : comportement et vieillissement". Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS267.
Pełny tekst źródłaThe development of high voltage dc equipment requires design according to specific criteria and including materials with appropriate properties. Indeed, while in ac the dielectric behaviour is mainly determined by permittivity, which varies little for the used materials with field and temperature at power frequency, the dc behavior is determined by highly non-linear volume and surface conductivity-related phenomena. Thus, it is well known that, in dc conditions, electric charge is injected and trapped in the bulk and on the surface, affecting the distribution of the electric field. Space charge accumulation is able to increase significantly the values of the field, thus accelerating ageing and increasing the risk of breakdown. The electrode nature, the field and temperature dependence of the electrical conductivity of the insulating material are key factors involved in the high dc field phenomena.Epoxy resins form an important category of polymeric insulating materials used in a wide range of electric power installations and equipment. In particular, they have been used especially as insulating supports for ac Gas Insulated Switchgear (GIS), because of their electrical and mechanical properties. However, the behaviour of these materials under high dc stress is less known and needs thorough investigation in view of dc applications.The purpose of this thesis is to investigate dielectric behavior of epoxy resins in order to assess their suitability for use in high DC voltage switchgear and define actions and criteria support for the design of such devices.We start by presenting the most important chemical thermal and dielectric properties of polymers as well as the various properties of the epoxy resin.Dielectric properties of the material at initial state with continuous temperature and electrical stress (loss factor, volume resistivity, thresholds and nonlinearity coefficients, surface resistivity, breakdown, evolution of space charge) are determined and investigated under dc fields at different temperatures
Silva, Igor. "Propriétés des matériaux isolants pour application dans les appareillages moyenne tension à tension continue". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT043.
Pełny tekst źródłaRecent advancements in direct-current technology from the high-voltage transport and low-voltage consumption have brought medium-voltage DC (MVDC) to the forefront. This thesis delves into the insulating DC properties of two commonly used materials in distribution equipment: epoxy filled with silica and silicone rubber.In a monolayer configuration, each material underwent extensive investigation, focusing on water sorption characteristics and electrical conduction. Current measurements were conducted to analyze conduction under various fields, temperatures, and water uptake conditions. Additionally, the Laser Pressure Pulse (LIPP) method was employed for space charge measurements as a complementary technique. The study extended to a bilayer configuration, combining both materials, with insights from monolayer experiments informing the properties of the bilayer and predicting field distribution.The DC conduction in epoxy exhibited high dependence on water absorption, with moisture influencing non-linearity and altering the conduction mechanism. Conversely, silicone demonstrated electrode-limited conduction, with current variations tied to water sorption through a saturation-limited mechanism. In a hypothetical bilayer configuration, where epoxy represents a type-C bushing and silicone serves as the cable termination, the field is expected to concentrate in the epoxy in dry environments, shifting to silicone as humidity increases. The thesis concludes with discussions on material selection strategies and the design of multi-layer configurations
Freye, Claudius [Verfasser], Frank [Akademischer Betreuer] Jenau i Thomas [Gutachter] Leibfried. "Methoden und Aspekte zur Leitfähigkeitsanalyse von Isolationsmaterialien der Kabeltechnologie und zur Isolationskoordination für Systeme der Hochspannungsgleichstromübertragung (HGÜ) : Methods and aspects for conductivity analysis of insulating materials in cable technology and for insulation coordination in high-voltage direct current transmission (HVDC) systems / Claudius Freye ; Gutachter: Thomas Leibfried ; Betreuer: Frank Jenau". Dortmund : Universitätsbibliothek Dortmund, 2020. http://d-nb.info/1214887627/34.
Pełny tekst źródłaBialek, Thomas Owen. "Evaluation and modeling of high-voltage cable insulation using a high-voltage impulse". Diss., Mississippi State : Mississippi State University, 2005. http://library.msstate.edu/content/templates/?a=72.
Pełny tekst źródłaLuo, Jing. "Novel insulation techniques for high voltage pulse transformers". Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13327.
Pełny tekst źródłaHare, Richard W. "Modelling space charge in solid dielectrics". Thesis, University of Bristol, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.482030.
Pełny tekst źródłaWallström, Stina. "Biofilms on silicone rubber for outdoor high voltage insulation". Doctoral thesis, KTH, Fiber- och polymerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171.
Pełny tekst źródłaKsiążki na temat "High voltage insulating"
Zhu, Daming. The detection of partial discharge in high voltage insulating materials, cable and cable terminations using acoustic emission techniques. Manchester: University of Manchester, 1996.
Znajdź pełny tekst źródłaKind, Dieter, i Hermann Kärner. High-Voltage Insulation Technology. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0.
Pełny tekst źródłaUshakov, Vasily Y. Insulation of High-Voltage Equipment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8.
Pełny tekst źródłaArora, Ravindra, i Wolfgang Mosch. High Voltage and Electrical Insulation Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470947906.
Pełny tekst źródłaArora, Ravindra. High voltage and electrical insulation engineering. Piscataway, NJ: IEEE Press, 2011.
Znajdź pełny tekst źródłaCanadian Society of Civil Engineers., red. High voltage insulator manufacture. [Montréal?: s.n., 1991.
Znajdź pełny tekst źródłaAbderrazzaq, Mohammad Hassan. High voltage composite insulation of water absorption. Manchester: University of Manchester, 1997.
Znajdź pełny tekst źródłaKind, Dieter. High-voltage insulation technology: Textbook for electrical engineers. Braunschweig: Vieweg, 1985.
Znajdź pełny tekst źródłaEngineers, Institution of Electrical, red. Insulators for high voltages. London, U.K: Peter Peregrinus on behalf of the Institution of Electrical Engineers, 1988.
Znajdź pełny tekst źródłaKreuger, F. H. Partial discharge detection in high-voltage equipment. London: Butterworths, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "High voltage insulating"
Küchler, Andreas. "Insulating Materials". W High Voltage Engineering, 301–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-11993-4_5.
Pełny tekst źródłaKind, Dieter, i Hermann Kärner. "Insulating Materials in High-Voltage Technology". W High-Voltage Insulation Technology, 62–96. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_2.
Pełny tekst źródłaUshakov, Vasily Y. "Insulating Materials and System Design Selection". W Insulation of High-Voltage Equipment, 3–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8_1.
Pełny tekst źródłaPagger, Ernst Peter, Norasage Pattanadech, Frank Uhlig i Michael Muhr. "Application of New Insulating Liquid in High Voltage Equipment". W Biological Insulating Liquids, 141–230. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22460-7_5.
Pełny tekst źródłaUshakov, Vasily Y. "Methods for Improving the Dielectric Properties of Electric Insulating Materials and Media". W Insulation of High-Voltage Equipment, 265–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8_9.
Pełny tekst źródłaVedral, Josef. "Partial Discharges in Insulating Systems of HV Electric Machines". W Non-destructive Diagnostic of High Voltage Electrical Systems, 109–27. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003394198-6.
Pełny tekst źródłaSufian, A. T., E. Elzagzoug i D. H. Smith. "Optical Chromatic Monitoring of High-Voltage Transformer Insulating Oils". W Advanced Chromatic Monitoring, 47–58. First edition. | Boca Raton : CRC Press, 2020. | Series:: CRC Press, 2020. http://dx.doi.org/10.1201/9780367815202-7.
Pełny tekst źródłaZáliš, Karel. "Using expert systems in evaluation of high voltage insulating systems". W Intelligent Systems for Manufacturing, 147–56. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-0-387-35390-6_13.
Pełny tekst źródłaUshakov, Vasily Ya, Alexey V. Mytnikov i Ikromjon U. Rakhmonov. "Insulating Materials and Media Used in High-Voltage Elements of Electric Power Systems". W Power Systems, 81–116. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38252-9_3.
Pełny tekst źródłaMaladen, R., C. Preve i D. Piccoz. "Validation of a New Eco-friendly Insulating Gas for Medium and High Voltage Equipment". W Lecture Notes in Electrical Engineering, 171–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58172-9_19.
Pełny tekst źródłaStreszczenia konferencji na temat "High voltage insulating"
Wang, Chaofan, Zhengyong Huang, Kai Zhang, Haochen Zuo, Jiachen Yao, Chen Zhao, Jian Li i Feipeng Wang. "Study on Dielectric Properties of Natural Ester Based Synthetic Insulating Oil". W 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676044.
Pełny tekst źródłaYan, Sichen, Feipeng Wang, Jian Li, Bojun Li, Ying Zhang, Shi Li i Jian Zhou. "PVDF-SiO2 Composite Nanofilm for Insulating Oil Reviving". W 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676251.
Pełny tekst źródłaKubiak, Mateusz, Filip Stuchala, Pawel Rozga, Fatih Atalar i Alsey Ersoy. "Experimental Validation of Impregnation Efficiency of GTL based Transformer Insulating Oils". W 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676268.
Pełny tekst źródłaZuo, Haochen, Zhengyong Huang, Jian Li, Kai Zhang, Chaofan Wang i Jawad Ahmad. "Simulation Study on the Morphology of Streamer Propagation in Insulating Oil". W 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676033.
Pełny tekst źródłaFagundes, Thallia F. D., Estàcio T. W. Neto i Gustavo P. Lopes. "Measurement of Partial Discharges in Distribution Transformers Immersed in Insulating Liquids". W 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676147.
Pełny tekst źródłaZhao, Chen, Zhengyong Huang, Weigen Chen, Jian Li, Chaofan Wang, Kai Zhang, Jawad Ahmad i Kaiyi Tian. "Study on Physical Properties of Liquid Crystal Based FR3 Insulating Oil". W 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676257.
Pełny tekst źródłaZeng, Ningyu, Juyi Pu, Zhengyong Huang, Bowen Lu i Jian Li. "The Effect of Air Bubbles on Streamer in Natural Ester Insulating Oils". W 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676299.
Pełny tekst źródłaTrnka, Pavel, Jaroslav Hornak, Ondrej Michal, Martin Muzik i Pavel Prosr. "Biodegradable Insulating Liquids used in Paper Oil Insulating System". W 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020. http://dx.doi.org/10.1109/ichve49031.2020.9279637.
Pełny tekst źródłaTang, X., W. Sima, Y. Chen, P. Sun, J. Xu i Y. Huang. "Research on insulation failure characteristics of encapsulated insulating resin under impulse electric". W 22nd International Symposium on High Voltage Engineering (ISH 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2022.0295.
Pełny tekst źródłaGuojun Lu, Qingdan Huang, Haoyong Song i Dezhi Zhang. "Influences of moisture content on insulation properties of vegetable insulating oil". W 2014 International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2014. http://dx.doi.org/10.1109/ichve.2014.7035470.
Pełny tekst źródłaRaporty organizacyjne na temat "High voltage insulating"
Eager, G. S. Jr, G. W. Seman i B. Fryszczyn. Determination of threshold and maximum operating electric stresses for selected high voltage insulations: Investigation of aged polymeric dielectric cable. Final report. Office of Scientific and Technical Information (OSTI), listopad 1995. http://dx.doi.org/10.2172/212744.
Pełny tekst źródła