Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: High Voltage Ceramic insulators.

Rozprawy doktorskie na temat „High Voltage Ceramic insulators”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 41 najlepszych rozpraw doktorskich naukowych na temat „High Voltage Ceramic insulators”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Que, Weiguo. "Electric Field and Voltage Distributions along Non-ceramic Insulators". The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1037387155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Blackmore, Paul David. "Degradation of polymeric outdoor high voltage insulation : surface discharge phenomena and condition assessment techniques". Thesis, Queensland University of Technology, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Braini, Shuaib. "Coatings for outdoor high voltage insulators". Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/59071/.

Pełny tekst źródła
Streszczenie:
As the range of transmission voltage increases, the pollution severity of the site becomes the most important factor in determining the insulation level of the system. Flashover on polluted insulators poses a serious threat to the reliability of the system and leads to system outages. There are many remedial measures to minimize the flashover of a porcelain insulator under pollution conditions. One such method is the application of hydrophobic coatings such as Room Temperature Vulcanizing Silicone Rubber (RTV- SiR) and Grease coatings on the surface of ceramic insulators. A recently proposed solution for contaminated outdoor insulators consists of the application of the Nanocoating “Voltshield” onto the surface of the insulator. This thesis reports a comparative assessment of the performance of these coating systems. Laboratory testing of coated porcelain insulators has been undertaken based on the solid layer method of IEC 60507 (artificial pollution- clean fog testing) and IEC 60587 (the inclined plane tests and constant voltage-liquid contaminants) to evaluate the coatings’ resistance against tracking and erosion. The performance of these coatings was assessed by monitoring the leakage current on the insulator surfaces. The applied voltage and the leakage current signals were acquired throughout the tests and saved for further analysis. The effect of UV radiation on the coatings has also been investigated. In addition, hydrophobicity tests were performed on the coated insulators. It was found that the Nanocoating reduces the leakage current by 90% whilst the energy absorbed on the insulator surface is reduced by 98% when compared to an uncoated insulator. The Nanocoating showed good resilience to sand blasting, but under long exposure to sand blasting, the surface began to degrade and showed pockmarks. The Nanocoated insulator showed good stability under UV exposure in terms of leakage current suppression. However, Nanocoated insulator lost its hydrophobicity on exposure to fog, and has lower flashover voltage than the uncoated insulator by 12.5%. Similar observations were made for the RTV coatings, where the current magnitude reduced by 92%, the energy absorbed on the insulator surface is reduced by 99% when compared to uncoated insulator and the flashover voltage is increased by 50%. RTV coating materials showed good resistance against tracking and erosion even after UV exposure. The electric field and voltage distribution along the leakage surface of coated and uncoated ceramic insulators under clean and polluted conditions were studied using finite element analysis COMSOL Multiphysics®. The electric field peaked at both the HV electrode and the ground electrode, and the presence of pollution in the form of water droplets on the coated insulator increased the electric field at the HV electrode. This study shows that the application of protective coatings to HV outdoor insulators significantly improves their performance. A reduction in surface current and power dissipation is observed, and a reduction in surface heating results in less dry-band arcing. A reduction in dissipated energy can make a contribution to reducing the total loss on the power system. In addition it showed the ability of coatings to resist tracking and erosion which leads to longer coating life under severe weather conditions. The coatings also increased the flashover voltage of the insulators which leads to more stable power system.
Style APA, Harvard, Vancouver, ISO itp.
4

Benwell, Andrew L. "Flashover prevention on polystyrene high voltage insulators in a vacuum". Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5018.

Pełny tekst źródła
Streszczenie:
Thesis (M.S.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 18, 2008) Includes bibliographical references.
Style APA, Harvard, Vancouver, ISO itp.
5

Ramos, Toriq. "Ultrasonic cleaning line walker for high voltage power line insulators". Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/3069.

Pełny tekst źródła
Streszczenie:
Thesis (MEng (Electrical Engineering))--Cape Peninsula University of Technology, 2018
This study investigates the feasibility to clean the insulators on live high voltage power lines autonomously, using ultrasound. Faulty and contaminated insulators on high voltage power lines cause flashovers, which contribute to load shedding and expensive repairs. Turning off the power in order to perform maintenance or clean insulators is a concern as it disrupts nearby businesses and homes. Regular maintenance of equipment on High voltage transmission lines (HVTL) is required to avoid major faults, thus saving money, and minimizing the pressure on the grid. Advancements in the field of robotics have catered for a solution to this concern. The study is divided into two sections; cleaning insulators using ultrasound and a line walker to navigate the high voltage transmission lines. The cleaning station was developed using a peculiar ultrasonic delivery method. The transducer is suspended 2 mm above the insulator and water is pumped into the gap between the two surfaces. The ultrasound is then applied to a small volume of water trapped by the face of the transducer using the phenomenon known as water surface tension or skin effect. A 12 V generator controlled by a Pulse Width Modulation (PWM) circuit delivers over 300 V peak to peak to the transducer via a push pull transformer. The station is equipped with a 28 kHz piezoelectric transducer governed by an admittance locking routine. The generator tracks the resonant frequency of the transducer to ensure maximum power is utilised for cleaning the contaminated area.. This peculiar delivery technique effectively cleans insulators contaminated with grease, boasts short cleaning times, and only requires a small quantity of water. A four wheeled line walker was then designed in order to transport the cleaning station to the contaminated insulators. Each wheel propels the line walker forward at 0.1 m/s, and a uniquely shaped leg mechanism couples them to the chassis. The four legs are capable of independently removing the wheels from the line to avoid obstacles, and a 16-bit Atmega 2560 microcontroller monitors and controls all on-board devices and moving parts. Limit switches, an accelerometer and an ultrasonic distance sensor allow the robot to navigate around obstacles such as strain clamps, vibration dampers and indicating spheres. The line walker is capable of maintaining a balanced horizontal position while navigating the line. A scaled prototype of the line walking robot was manufactured and tested in a laboratory environment. The results prove that the robot can effectively navigate around obstacles while the system is run completely autonomously. The study provides proof of concept and enough evidence to suggest that the ultrasonic cleaning line walker is a feasible project with great potential.
Style APA, Harvard, Vancouver, ISO itp.
6

Hinde, David Derek. "Corona discharges on the surfaces of high voltage composite insulators". Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/29320/2/David_Hinde_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications. This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon. Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented. A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators. Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.
Style APA, Harvard, Vancouver, ISO itp.
7

Hinde, David Derek. "Corona discharges on the surfaces of high voltage composite insulators". Queensland University of Technology, 2009. http://eprints.qut.edu.au/29320/.

Pełny tekst źródła
Streszczenie:
The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications. This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon. Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented. A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators. Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.
Style APA, Harvard, Vancouver, ISO itp.
8

Goss, Ben. "Degradation and life time prediction of high voltage insulation materials". Thesis, Queensland University of Technology, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Elbuzedi, Mohamed. "Material study and properties of polymers used in composite high voltage insulators". Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/17749.

Pełny tekst źródła
Streszczenie:
Thesis (MSc)--University of Stellenbosch, 2007.
ENGLISH ABSTRACT: Silicone rubber, particularly poly(dimethylsiloxane) (PDMS), has been increasingly used in the manufacture of outdoor high voltage insulators in the recent years. PDMS offers several advantages that make it suitable for outdoor use, such as low weight, a hydrophobic surface, stability, and excellent performance in heavily polluted environments. PDMS surfaces can, however, become progressively hydrophilic due to surface oxidation caused by corona discharge, UV radiation and acid rain. In this study, PDMS samples of controlled formulations as well as six commercial insulator materials four PDMS based and two ethylene propylene diene monomer (EPDM) based were exposed to various accelerated weathering conditions for various periods of time in order to track changes in the material over time. The ageing regimes developed and used to simulate the potential surface degradation that may occur during in-service usage included needle corona and French corona ageing, thermal ageing, UV-B irradiation (up to 8000 hours) and acid rain (up to 200 days). Both the chemical and physical changes in the materials were monitored using a wide range of analytical techniques, including: static contact angle measurements (SCA), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), gas chromatography (GC), gas chromatography/mass spectroscopy (GC/MS), size-exclusion chromatography (SEC), Fourier-transform infrared photoacoustic spectroscopy (FTIR-PAS) and slow positron beam techniques (PAS). A low molecular weight (LMW) uncrosslinked PDMS model compound was used to further study the chemical effects of corona exposure on PDMS materials. PDMS showed far better performance than EPDM, in terms of resistance to the various ageing regimes and “hydrophobicity recovery”.
AFRIKAANSE OPSOMMING: Silikoonrubber, spesifiek polidimetielsiloksaan (PDMS), is gedurende die afgelope paar jaar toenemend gebruik in die vervaardiging van buitelughoogspanningisolators. PDMS het baie voordele vir gebruik in elektriese isolators soos ‘n laer massa, ʼn hidrofobiese oppervlak, stabiliteit en uitstekende werking in hoogsbesoedelde omgewings. Die hidrofobiese oppervlakte kan egter gelydelik hidrofilies word weens oppervlakoksidasie as gevolg van korona-ontlading, UV-bestraling en suurreën. In hierdie studie is PDMS monsters van verskillende samestellings sowel as ses kommersiële isolators (vier PDMS en twee etileenpropileenrubber (EPDM)) blootgestel aan verskillende versnelde weersomstandighede vir verskillende periodes om die veranderinge in die materiale te monitor. Die verskillende materiale is gerangskik volgens hulle werking oor ‘n periode van tyd. Dit het ook ‘n geleentheid gebied om die eienskappe van die verskillende samestellings te bestudeer. Die tegnieke wat ontwikkel is om die moontlike oppervlakdegradasie te simuleer, het naald-korona, “French” korona, UVB-bestraling (tot 8000 uur) en suurreën (tot 200 dae) ingesluit. Beide die chemiese en die fisiese veranderinge in die materiale is gemonitor met behulp van verskeie tegnieke soos statiese kontakhoekbepaling, optiese mikroskopie, skandeerelektronmikroskopie, energieverspreidingsspektroskopie, gaschromatografie, grootte-uitsluitingschromatografie, foto-akoestiese Fouriertransforminfrarooi (PASFTIR) en stadige-positronspektroskopie (PAS). ʼn Lae molekulêre massa PDMS modelverbinding is gebruik om die chemiese effek van korona te bestudeer. Die PDMS materiale het baie beter vertoon teenoor die EPDM materiale in terme van hulle herstel van hidrofobisiteit.
Style APA, Harvard, Vancouver, ISO itp.
10

Atari, Jabarzadeh Sevil. "Prevention of Biofilm Formation on Silicone Rubber Materials for Outdoor High Voltage Insulators". Doctoral thesis, KTH, Polymera material, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174091.

Pełny tekst źródła
Streszczenie:
Microbial colonization on the surface of silicone rubber high voltage outdoor insulators often results in the formation of highly hydrated biofilm that influence the surface properties, such as surface hydrophobicity. The loss of hydrophobicity might lead to dry band formation, and, in the worst cases, flashover and failure of the insulator. In this work, the biocidal effects of various antimicrobial compounds in silicone rubber materials were determined. These materials were evaluated according to an ISO standard for the antimicrobial activity against the growth of aggressive fungal strains, and microorganisms that have been found colonizing the surfaces of outdoor insulators in several areas in the world. Several compounds suppressed microbial growth on the surfaces of the materials without compromising the material properties of the silicone rubber. A commercial biocide and thymol were very effective against fungal growth, and sodium benzoate could suppress the fungal growth to some extent. Thymol could also inhibit algal growth. However, methods for preservation of the antimicrobial agents in the bulk of the material need to be further developed to prevent the loss of the compounds during manufacturing. Biofilm formation affected the surface hydrophobicity and complete removal of the biofilm was not achieved through cleaning. Surface analysis confirmed that traces of microorganisms were still present after cleaning. Further, surface modification of the silicone rubber was carried out to study how the texture and roughness of the surface affect biofilm formation. Silicone rubber surfaces with regular geometrical patterns were evaluated to determine the influence of the surface texture on the extent of microbial growth in comparison with plane silicone rubber surfaces. Silicone rubber nanocomposite surfaces, prepared using a spray-deposition method that applied hydrophilic and hydrophobic nanoparticles to obtain hierarchical structures, were studied to determine the effects of the surface roughness and improved hydrophobicity on the microbial attachment. Microenvironment chambers were used for the determination of microbial growth on different modified surfaces under conditions that mimic those of the insulators in their outdoor environments. Different parts of the insulators were represented by placing the samples vertically and inclined. The microbial growth on the surfaces of the textured samples was evenly distributed throughout the surfaces because of the uniform distribution of the water between the gaps of the regular structures on the surfaces. Microbial growth was not observed on the inclined and vertical nanocomposite surfaces due to the higher surface roughness and improved surface hydrophobicity, whereas non-coated samples were colonized by microorganisms.

QC 20151002

Style APA, Harvard, Vancouver, ISO itp.
11

Abraham, Berhane Teclesenbet. "Degradation and recovery of polydimethylsiloxane (PDMS) based composites used as high voltage insulators". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49902.

Pełny tekst źródła
Streszczenie:
Thesis (MSc)--Stellenbosch University, 2004.
ENGLISH ABSTRACT: Polydimethylsiloxane (PDMS) compounds are utilized in outdoor high voltage insulation due to their low weight, vandalism resistance, better anti-contamination performance and their superior hydrophobic nature. Under severe environmental conditions and over prolonged service time, however, the hydrophobic surface can gradually become hydrophilic and then recover with adequate resting period. In this study, room temperature vulcanized (RTV) PDMS samples were prepared with different formulations and then exposed to corona discharge to evaluate its effect. The influence of different additives, such as different types and amount of fillers and additionally added low molar mass silicone oils, on the hydrophobicity recovery of the material was investigated. The effects of two types of corona treatment were also evaluated. Hydrophobicity recovery of corona and UV-C aged PDMS samples was evaluated by means of static contact angle measurements. Positron annihilation spectroscopy (PAS) gave important information on the micro structural change after corona treatment of RTV PDMS as well as naturally aged high temperature vulcanized (HTV) PDMS samples. The different formulations of the RTV PDMS samples and the effect of the additives were studied with this technique. The formation of a thin, highly crosslinked inorganic silica-like (SiOx) layer was confirmed even at the early stage of degradation. It was also possible to estimate the thickness of the silica-like layer formed during corona exposure that is responsible for the loss and recovery of hydrophobicity. The surface hardness and hydrophilicity change of PDMS samples due to corona treatment were studied simultaneously with force distance measurements by atomic force microscopy (AFM). The adhesive force calculated from the pull-off force-distance curves showed that the adhesive force between the probe and the sample decreased with increasing corona treatment time, indicating hydrophobicity recovery. In addition to this, the increase in hardness after corona exposure provides indirect evidence of the formation of a silica-like layer. In all cases the hydrophilicity and the surface hardness of the PDMS samples increased directly after corona treatment and recovered with time. Two types of FTIR spectroscopy were used to analyse the surface of the polymer.
AFRIKAANSE OPSOMMINGS: Polidimetielsiloksaan (PDMS) word in buitelug hoogspanninginsulasie gebruik as gevolg van sy lae massa, weerstand teen vandalisme, verbeterde anti-kontaminasie werkverrigting en superieure hidrofobiese karakter. Die hidrofobiese oppervlakte kan egter gelydelik hidrofillies word onder uiterste omgewingsomstandighede en oor langdurige dienstyd. PDMS materiaal herstel egter nadat dit genoeg rustyd toegelaat is. Kamertemperatuur-gevulkaniseerde (KTV) PDMS met verskillende formulasies is in hierdie studie voorberei, aan korona ontlading blootgestel, geëvalueer en vergelyk. Die invloed van bymiddels soos verskillende tipes en hoeveelhede vuiler, asook addisionele lae molekulêre massa silikoonolie, op die herstel van hidrofobisiteit van die materiaal is ondersoek. Twee verskillende metodes van korona behandeling is ook geëvalueer. Die herstel van hidrofobisiteit van korona en UV-C verouderde PDMS monsters is met statiese kontakhoekmeting geëvalueer. Positronvernietigingspektroskopie (PVS) is 'n kragtige tegniek wat belangrike inligting oor die mikrostrukturele verandering van korona behandelde van KTV PDMS sowel as natuurlik-verouderde hoë temperatuur gevulkaniseerde (HTV) PDMS monsters gee. Die verskillende formulasies van die KTV PDMS monsters, sowel as die effek van die vullers, is met behulp van hierdie tegniek ondersoek. Die vorming van 'n dun, hoogskruisgebinde, anorganiese silika-agtige (SiOx) laag op die PDMS oppervlak, selfs tydens die vroeë stadium van degradasie, is bevestig. Dit was ook moontlik om die dikte van die silika-agtige laag wat gedurende die korona blootstelling gevorm het, en wat verantwoordelik is vir die verlies aan hidrofobisiteit, te bepaal. Die oppervlakhardheid en hidrofilisiteit verandering van PDMS monsters as gevolg van korona behandeling, was gelyktydig met krag-afstand metings deur middel van atoomkragmikroskopie (AKM) bestudeer. Die kleefkrag, soos bereken van aftrek kragafstandkurwes, dui daarop dat kleefkragte tussen die taster en die monster afneem met toenemende korona behandelingstyd, wat beduidend is op die herstel van hidrofobisiteit. Daarbenewens is die toename van oppervlakhardheid na korona blootstelling "n indirekte bewys van die formasie van 'n silika-agtige laag. In alle gevalle het die hidrofilisiteit en die oppervlakhardheid van die PDMS monsters toegeneem direk na afloop van korona behandeling en gevolglik herstel met tyd. Twee tipes IR spektroskopie metodes is gebruik vir die chemiese-oppervlak analises
Style APA, Harvard, Vancouver, ISO itp.
12

Banik, Apu. "Condition assessment of high voltage insulators in different environments with non-sinusoidal excitation". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/206148/1/Apu_Banik_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
This project was a step forward in investigating the effect of supply voltage harmonic contents on the measured leakage current of polluted insulators operating in different environments. This study was then used as a basis for developing a sound theoretical understanding of the effects of supply voltage harmonic contents on the measured leakage current characteristics. This study was also used to develop a new condition monitoring index for the polluted insulator under harmonically distorted supply voltage.
Style APA, Harvard, Vancouver, ISO itp.
13

Rux, Lorelynn Mary. "The physical phenomena associated with stator winding insulation condition as detected by the ramped direct high-voltage method". Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-04042004-112949.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Brown, Martin. "High voltage soliton production in nonlinear transmission lines and other pulsed power applications". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Sovar, Robert D. "Novel analytical techniques for the assessment of degradation of silicone elastomers in high voltage applications". Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/16072/1/Robert_Sovar_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
Over the last 20 years "composite" insulators have been increasingly used in high voltage applications as an alternative traditional materials. More recently, polydimethylsiloxane (PDMS) have been used as weather sheds on these composite insulators. The main attraction with PDMS is that the surface hydrophobicity can be recovered following pollution or surface discharges. Among the possible mechanisms for recovery the most likely is the migration of low molecular weight silicone oil (LMWS) from the bulk to the surface encapsulating pollutant particles. Although it is widely recognised that the migration of LMWS is the cause of this recovery of hydrophobicity, the mechanism of what actually occurs is not well understood. It is also not known for how long this process will continue. The main objective of this study program was to gain improved understanding of the surface hydrophobic recovery process that is unique to polydimethlysiloxane high-voltage insulators. Fundamental knowledge of this mechanism has been increased through the development of the Contact Angle DRIFT Electrostatic Deposition (CADED) novel analytical technique. This technique enabled study of the degradation of silicone elastomers subjected to high voltage environments by closely following LMWS migration from the bulk material to the surface and linking it to the contact angle measurements. The migration rate data showed that the aged material recovered faster that the virgin material. Differences in the rate and maximum surface levels of silicone were seen between materials from different manufacturers. This has significant implications for the life-time of these materials A model system has been developed to examine LMWS diffusion through the bulk material and into the interface of surface and pollutant. This was achieved by examining theoretical and empirically derived equations and using existing experimental data to better understand the mechanism of recovery. This diffusion was Fickian in the initial stages of recovery. X-ray photoelectron spectroscopy (XPS) and contact angle measurements were used to substantiate the degree of degradation in in-field silicone insulators by quantifying the levels of the major degradation products: silica and silica-like material and alumina.
Style APA, Harvard, Vancouver, ISO itp.
16

Sovar, Robert D. "Novel Analytical Techniques For the Assessment of Degradation of Silicone Elastomers in High Voltage Applications". Queensland University of Technology, 2005. http://eprints.qut.edu.au/16072/.

Pełny tekst źródła
Streszczenie:
Over the last 20 years "composite" insulators have been increasingly used in high voltage applications as an alternative traditional materials. More recently, polydimethylsiloxane (PDMS) have been used as weather sheds on these composite insulators. The main attraction with PDMS is that the surface hydrophobicity can be recovered following pollution or surface discharges. Among the possible mechanisms for recovery the most likely is the migration of low molecular weight silicone oil (LMWS) from the bulk to the surface encapsulating pollutant particles. Although it is widely recognised that the migration of LMWS is the cause of this recovery of hydrophobicity, the mechanism of what actually occurs is not well understood. It is also not known for how long this process will continue. The main objective of this study program was to gain improved understanding of the surface hydrophobic recovery process that is unique to polydimethlysiloxane high-voltage insulators. Fundamental knowledge of this mechanism has been increased through the development of the Contact Angle DRIFT Electrostatic Deposition (CADED) novel analytical technique. This technique enabled study of the degradation of silicone elastomers subjected to high voltage environments by closely following LMWS migration from the bulk material to the surface and linking it to the contact angle measurements. The migration rate data showed that the aged material recovered faster that the virgin material. Differences in the rate and maximum surface levels of silicone were seen between materials from different manufacturers. This has significant implications for the life-time of these materials A model system has been developed to examine LMWS diffusion through the bulk material and into the interface of surface and pollutant. This was achieved by examining theoretical and empirically derived equations and using existing experimental data to better understand the mechanism of recovery. This diffusion was Fickian in the initial stages of recovery. X-ray photoelectron spectroscopy (XPS) and contact angle measurements were used to substantiate the degree of degradation in in-field silicone insulators by quantifying the levels of the major degradation products: silica and silica-like material and alumina.
Style APA, Harvard, Vancouver, ISO itp.
17

Mouton, Gerton Nicolaas Jacobus. "An evaluation of different material line insulators under high voltage AC and bipolar DC excitation in a marine polluted environment". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71940.

Pełny tekst źródła
Streszczenie:
Thesis (MScEng)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: The worldwide increase in the popularity of high voltage direct current (HVDC) power transmission application has led to questions regarding the performance of high voltage alternating current (HVAC) insulators when energized under HVDC excitation. These questions have led researchers conduct numerous research projects worldwide. A particular question NamPower (the power utility in Namibia) has faced is: how do these insulators perform and age when energized under HVDC excitation in heavily polluted environments? This question was only partly answered by some insulator ageing tests conducted under laboratory conditions for HVDC excitation. However, the natural ageing tests on insulators, which are preferred, have to date been confined predominantly to HVAC excitation voltages. Thus, this research was initiated to investigate the natural ageing performance of insulators under both HVAC and HVDC excitations, when subjected to harsh marine pollution environments. This research project involved performance and ageing tests on three identical sets of line insulators made from different insulator materials, energised under HVAC and both polarities HVDC excitations respectively. The tests were conducted at Koeberg insulator pollution test station (KIPTS), which is a natural marine pollution insulator test station located near Cape Town, along the west coast of South Africa, approximately 50 m from the sea. The set of insulators consisted of EPDM silicone alloy rubber, HTV silicone rubber, RTV silicone rubber coated porcelain, Porcelain and Glass insulators. The HVAC excitation voltage was chosen as 12.7 kV r.m.s. phase-to-ground and it was decided to use a HVDC excitation voltage equal to this value. The research results showed that the insulators made from HTV silicone rubber performed better than the insulators made from EPDM silicone alloy rubber under all excitation voltages. It is also showed that RTV silicone rubber coated porcelain insulators performed better than Glass and Porcelain insulators under all excitation voltages.
AFRIKAANSE OPSOMMING: Die wêreld wye toename in gewildheid van hoë spanning gelyk stroom (HSGS) krag transmisie aplikasie het gelei na vrae oor die effektieweteit van hoë spanning wissel stroom (HSWS) insolators in HSGS aplikasies. Hierdie vrae het gelei na baie navorsings projekte. Een vraag waarmee NamPower (die krag voorsienings maatskapy in Namibia) gekonfronteer was, was hoe gaan die insolators wat onderworpe is aan ’n HSGS toevoer reageer in ’n baie besoedelde omgewing. Hierdie vraag was slegs gedeeltelik beantwoord deur verouderings toetse op insolators wat gedoen is in ’n labaratorium met ’n HSGS toevoer. Inteendeel, die meeste natuurlike verouderings toetse op insolators, soos verkies, is meestal gedoen met ’n HSWS toevoer. Om hierdie rede was hierdie navorsing begin om natuurlike verouderings toetse te doen op insolators onderworpe beide aan HSWS en HSGS toevoere binne ’n marien besoedelde omgewing. Hierdie navorsings projek gaan oor prestering en verouderings toetse op drie, identiese, transmissie lyn insolator stelle, wat onderskeidelik onderworpe was aan HSWS en beide polariteite HSGS toevoere. Die toetse was gedoen by Koeberg insolator besoedeling toets stasie (KIBTS) wat naby Kaapstad geleë is langs die weskus van Suid Africa omtrent 50 m van die see. ’n Stel toets insolators bestaan uit EPDM silikon allooi rubber, HTV silikon rubber, RTV silikon rubber bedekte porselein, Porselein en Glas insolators. Die HSWS waarde waarmee die insolators getoets was, was 12.7 kV w.g.k., fase-na-grond, en dit was besluit om ’n HSGS waarde gelyk aan hierdie spannings waarde te gebruik. Die navorsings resultate wys dat insolators wat gemaak is met HTV silikon rubber presteer beter as insolators wat met EPDM silikon allooi rubber gemaak is onder al die verskillende toevoere. Dit wys ook dat RTV silikon rubber bedekte porselein presteer beter as Porselein en Glas insolators onder al die verskillende toevoere.
Style APA, Harvard, Vancouver, ISO itp.
18

Alles, Joan. "Investigations on flashover of polluted insulators : Influence of silicone coating on the behavior of glass insulators under steep front impulse". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC058.

Pełny tekst źródła
Streszczenie:
Cette thèse s’inscrit dans le cadre de l’amélioration du comportement électrique des isolateurs de lignes haute tension ; l’objectif est d’assurer une meilleure fiabilité et qualité d’alimentation en énergie électrique. Ce travail a été motivé par la nécessité de répondre à trois questions liées au comportement des isolateurs verre en zone polluée. La première porte sur la recherche d’une méthode permettant de calculer la tension de contournement des chaînes polluées selon le type d’isolateur et ses caractéristiques. La deuxième question concerne la différence de comportement entre les isolateurs en verre et les isolateurs en porcelaine de type « outerrib » ; ce type d’isolateurs présente une forme spécifique adaptée aux environnements à forte pollution. Les tensions de contournement ainsi que les trajectoires de l’arc sur les isolateurs en verre sont très différentes de celles observées avec les isolateurs en porcelaine. Et la troisième question est relative à la défaillance des isolateurs recouverts de silicone lors des essais en chocs (des impulsions de tension) à front raide. En effet, les isolateurs recouverts d’une couche de 0.3 mm (ou plus) de silicone hydrophobe explosent lorsqu’ils sont soumis à des impulsions de tension à front raide d’amplitude très élevée pendant un temps très court. Différents mécanismes pouvant être à l’origine de l’explosion/éclatement des isolateurs recouverts d’une couche de silicone sont discutés. Il ressort des différents tests et analyses que le mécanisme le plus probable semble être la fragmentation par plasma. En effet, suite à l’application d’une tension à front raide, d’amplitude très élevée, des canaux (fissures) microscopiques prennent naissance là où le champ électrique est le plus intense. L’application répétitive des chocs de tension conduit au développement de décharges dans ces canaux (rupture diélectrique de l’air) c’est-à-dire des arcs (canaux de plasma) qui se développent/propagent dans le volume de l’isolateur. La puissance déchargée (c’est-à-dire l’énergie stockée dans les condensateurs du générateur en des temps très courts) dans ces canaux à chaque choc étant très élevée, elle conduit à l’explosion de l’isolateur après quelques chocs (parfois 5 ou 6 suffisent): c’est la fragmentation par plasma
This thesis deals with the improvement of the electrical behavior of insulators of high voltage lines; the objective is to ensure better reliability and quality of power supply. This work was motivated by the need to answer three questions related to the behavior of glass insulators in polluted areas. The first one concerns the search for method for calculating the flashover voltage of polluted chains according to the type of insulator and its characteristics. The second question concerns the difference in behavior between glass insulators and "outerrib" porcelain insulators; this type of insulator has a specific shape adapted to environments with high pollution. The flashover voltages as well as the trajectories of the arc on glass insulators are very different from those observed with porcelain insulators. And the third issue is the failure of silicon-coated insulators during shock tests (pulses) with a steep front. Indeed, insulators coated with a layer of 0.3 mm (or more) of hydrophobic silicone explode when subjected to very high amplitude steep-edge voltage pulses for a very short time. Different mechanisms that may be responsible for the explosion / puncturing of insulators covered with a layer of silicone are discussed. It appears from the various tests and analyzes that the most probable mechanism seems to be plasma fragmentation (cracking). Indeed, following the application of a steep front voltage, of very high amplitude, microscopic channels (fissures) originate where the electric field is most intense. The repetitive application of impulse voltages (shocks) leads to the development of discharges in these channels (breakdown of the air), i.e.; arcs (plasma channels) which develop / propagate in the volume of the insulator. The discharged power (i.e.; the energy stored in the capacitors of the generator in a very short times) in these channels (cracks) at each shock being very high, leads to the explosion of the insulator after some shocks (5 to 6 sometimes): it is the fragmentation by plasma or plasma cracking
Style APA, Harvard, Vancouver, ISO itp.
19

Mohd, Noor Mohd Junaizee. "Application of knowledge-based fuzzy inference system on high voltage transmission line maintenance". Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/16050/1/Mohd_Junaizee_Mohd_Noor_Thesis.pdf.

Pełny tekst źródła
Streszczenie:
A majority of utilities conduct maintenance of transmission line components based on the results of routine visual inspection. The inspection is normally done by inspectors who detect defects by visually checking transmission line components either from the air (in helicopters), from the ground (by using high-powered binoculars) or from the top of the structure (by climbing the structure). The main problems with visual inspection of transmission lines are that the determination of the defects varies depending on the inspectors' knowledge and experience and that the defects are often reported qualitatively using vague and linguistic terms such as "medium crack", "heavy rust", "small deflection". As a result of these drawbacks, there is a large variance and inconsistency in defect reporting (which, in time, makes it difficult for the utility to monitor the condition of the components) leading to ineffective or wrong maintenance decisions. The use of inspection guides has not been able to fully address these uncertainties. This thesis reports on the application of a visual inspection methodology that is aimed at addressing the above-mentioned problems. A knowledge-based Fuzzy Inference System (FIS) is designed using Matlab's Fuzzy Logic Toolbox as part of the methodology and its application is demonstrated on utility visual inspection practice of porcelain cap and pin insulators. The FIS consists of expert-specified input membership functions (representing various insulator defect levels), output membership functions (indicating the overall conditions of the insulator) and IF-THEN rules. Consistency in the inspection results is achieved because the condition of the insulator is inferred using the same knowledge-base in the FIS rather than by individual inspectors. The output of the FIS is also used in a mathematical model that is developed to suggest appropriate component replacement date. It is hoped that the methodology that is introduced in this research will help utilities achieve better maintenance management of transmission line assets.
Style APA, Harvard, Vancouver, ISO itp.
20

Mohd, Noor Mohd Junaizee. "Application of knowledge-based fuzzy inference system on high voltage transmission line maintenance". Queensland University of Technology, 2004. http://eprints.qut.edu.au/16050/.

Pełny tekst źródła
Streszczenie:
A majority of utilities conduct maintenance of transmission line components based on the results of routine visual inspection. The inspection is normally done by inspectors who detect defects by visually checking transmission line components either from the air (in helicopters), from the ground (by using high-powered binoculars) or from the top of the structure (by climbing the structure). The main problems with visual inspection of transmission lines are that the determination of the defects varies depending on the inspectors' knowledge and experience and that the defects are often reported qualitatively using vague and linguistic terms such as "medium crack", "heavy rust", "small deflection". As a result of these drawbacks, there is a large variance and inconsistency in defect reporting (which, in time, makes it difficult for the utility to monitor the condition of the components) leading to ineffective or wrong maintenance decisions. The use of inspection guides has not been able to fully address these uncertainties. This thesis reports on the application of a visual inspection methodology that is aimed at addressing the above-mentioned problems. A knowledge-based Fuzzy Inference System (FIS) is designed using Matlab's Fuzzy Logic Toolbox as part of the methodology and its application is demonstrated on utility visual inspection practice of porcelain cap and pin insulators. The FIS consists of expert-specified input membership functions (representing various insulator defect levels), output membership functions (indicating the overall conditions of the insulator) and IF-THEN rules. Consistency in the inspection results is achieved because the condition of the insulator is inferred using the same knowledge-base in the FIS rather than by individual inspectors. The output of the FIS is also used in a mathematical model that is developed to suggest appropriate component replacement date. It is hoped that the methodology that is introduced in this research will help utilities achieve better maintenance management of transmission line assets.
Style APA, Harvard, Vancouver, ISO itp.
21

Vosloo, Wallace L. (Wallace Lockwood). "A comparison of the performance of high-voltage insulator materials in a severely polluted coastal environment". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52625.

Pełny tekst źródła
Streszczenie:
Thesis (PhD)--University of Stellenbosch, 2002.
ENGLISH ABSTRACT: The main aim of this research programme was to compare the relative performance of different insulator materials used in South Africa when subjected to a severe marine pollution environment. A test programme and procedure, test facility and instrumentation were established. Some novel instrumentation and monitoring equipment were developed and built specifically for this research programme, supported by data analysing software programs. In order to compare material performance only, all non-material design variables between the test insulators had to be removed (e.g. creepage distance, connecting length, inter-shed spacing, profile, etc.). To achieve this some of the test insulators had to be specially manufactured. Leakage current, electrical discharge activity, climatic and environmental data was collected successfully over a one-year test period, starting with new test insulators. The peak and energy values of the leakage current were identified as the two main parameters needed to describe the leakage current activity on the test insulators. A correlation was found between the climatic and environmental data and the leakage current data, and it was found that the leakage current can be determined successfully from some of the climatic and environmental parameters monitored by using multiple regression techniques. Surface conductivity and energy were found to be the best parameters to show the maximum and continuous interaction of the insulator material surface with the electrolytic pollution layer. A natural ageing and pollution test procedure was developed, which has become a South African standard and is gaining international acceptance. A model and hypothesis are proposed to describe the electrical discharge activity that takes place on the test insulators and explain the difference in leakage current performance of the various materials. Keywords: Insulator, Pollution, High Voltage, Leakage current, Material performance.
AFRIKAANSE OPSOMMING: Die hoofdoel van hierdie navorsingsprogram was om die relatiewe prestasie van verskillende isolatormateriale wat in Suid-Afrika gebruik word te vergelyk in 'n swaar besoedelde marine omgewing. 'n Toetsprogram en prosedure, toets fasiliteit en instrumentasie is gevestig. 'n Paar nuwe instrumente en moniteer toerusting is ontwikkel en gebou spesifiek vir hierdie navorsingsprogram, gesteun deur data analise sagteware programme. Ten einde slegs materiaalprestasie te vergelyk, moes alle nie-materiaal ontwerpsveranderlikes tussen die toetsisolators verwyder word (bv. kruipafstand, konnekteer lengte, tussen-skerm spasiëring, profiel, ens.). Om dit reg te kry moes sommige van die toetsisolators spesiaal vervaardig word. Lekstroom, elektriese ontladingsaktiwiteit, klimaat en omgewingsdata is suksesvol versameloor 'n een-jaar toetsperiode, beginnende met nuwe toets isolators. Die piek en energie waardes van die lekstroom is identifiseer as die twee hoof parameters wat nodig is om die lekstroomaktiwiteit op die toetsisolators te beskryf. 'n Korrelasie is gevind tussen die klimaat- en omgewingsdata en die lekstroom data, en dit is gevind dat die lekstroom data suksesvol bepaal kan word van sekere van die klimaat- en omgewingsparameters wat gemoniteer is deur veelvoudige regressie tegnieke te gebruik. Oppervlakskonduktiwiteit en energie is gevind die beste parameters te wees om die maksimum en kontinue interaksie van die isolatormateriaaloppervlak met die elektrolitiese besoedelingslaag aan te toon. 'n Natuurlike veroudering en besoedeling toetsprosedure is ontwikkel, wat 'n Suid-Afrikaanse standaard geword het en besig is om internastionale aanvaarding te wen. 'n Model en hipotese word voorgestelom die elektriese ontladingsaktiwiteit wat op die toetsisolators plaasvind te beskryf en om die verskil in lekstroomprestasie van die verskeie materiale te verduidelik. S/eufelwoorde: Isolator, Besoedeling, Hoog Spanning, Leek stroom, Materiaal prestasie.
Style APA, Harvard, Vancouver, ISO itp.
22

Elombo, Andreas Iyambo. "An evaluation of HTV-SR insulators with different creepage lengths under AC and bipolar DC in marine polluted service conditions". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20236.

Pełny tekst źródła
Streszczenie:
Thesis (MScEng)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: The use of high voltage direct current (HVDC) applications has gained enormous popularity for long distance power transmission. This is due to the lucrative benefits offered by this type of power transmission technology when compared to the traditional high voltage alternative current (HVAC). This new shift in the paradigm of power system design has led to the increased interest in the research that focuses on issues relating to the reliability of power supply associated with HVDC. Amongst such issues, insulation coordination has increasingly become a challenging task that continues to receive renewed research focus. It has been convincingly demonstrated, both from field experience and laboratory research, that insulator contamination constitutes a multifaceted phenomenon, especially when transmission voltages ramp up into high operating voltage levels. More so, this is particularly interesting with reference to the increasing applications of high voltage direct current (HVDC). The recently commissioned HVDC power-line in Namibia is one of the major motivations upon which NamPower (Namibia‟s national power utility) has committed financial resources to research on insulator pollution performance. This project was a part of NamPower‟s research initiative – seeking to investigate the phenomena associated with insulator pollution performance under natural pollution environments when energized under both AC and DC excitation voltage types. The significance of this research is especially crucial for HVDC applications given the paucity of research conducted on the DC performance of insulators, under natural pollution environments. This study was conducted at the Koeberg Insulator Pollution Test Station (KIPTS) on the west coast of Cape Town in the Western Cape province of South Africa. KIPTS is an internationally recognized insulator pollution test facility, which is widely used by both insulator manufacturers and academic researchers from many parts of the world. STRI and ABB, both Swedish-based companies, are good examples of international subscribers to the KIPTS research facility. The first objective of this research was to design a suitable DC excitation voltage system for both DC+ and DC- to be used at KIPTS. This apparatus was designed and built at the University of Stellenbosch. The second objective was to conduct a comparative evaluation of the performance of high temperature vulcanized silicone rubber (HTV-SR) power line insulators under AC, DC+ and DC- when subjected to natural pollution conditions at KIPTS. All test insulators were made from the same material and sourced from the same manufacturer – having different creepage lengths. Five different creepage lengths were considered for each excitation voltage – summing up to fifteen HTV-SR test samples. A standard DC glass disc insulator was also installed on each excitation voltage as a control sample. It was therefore envisaged that this study would give rise to new research questions, leading to future explorations on the subject. With reference to weather monitoring and leakage current measurements (using an online leakage current monitoring device - OLCA), a correlation was found to exist between the variations in climatic conditions and the corresponding occurrence of leakage current on the insulator surfaces. High leakage current levels were recorded in summer due to the high pollution levels that were measured in that season (using the equivalent salt deposit density (ESDD) approach). Winter, in contrast, had lower levels of leakage current recorded. This corresponds to a high prevalence of rainfall in winter, which caused occasional natural washing of the insulator surfaces. The leakage current levels for the HTV-SR insulators were of a similar order of magnitude for AC and DC+ and lower for DC-. The harshest pollutants (with high conductivities, as measured with the directional dust deposit gauges (DDDG)) were found to have emanated largely from the south. As a result, most instances of erosion were observed in the southward direction on the test insulators. The electrical discharge activity observations, conducted at night, had revealed that dryband corona (DBC) and dryband discharge (DBD) prominently occurred on the terminating sheaths (both live and ground ends) and bottom side of HTV-SR and glass disc insulators, respectively. This justifies the dominance of erosion that was observed on the terminating sheaths and bottom side of HTV-SR and glass disc insulators, respectively. Flashover events were recorded on the shortest HTV-SR insulator installed on DC+ and the glass disc insulator installed on DC-. All flashover events occurred in summer (the harshest season at KIPTS). Two interesting observations, albeit unexplained, were observed: star-shaped erosion on the shed bottoms of the HTV-SR insulators installed on DC+ and material peel-off at the shed-to-sheath bonding interface of the HTV-SR insulators installed on DC-. These observations therefore require further investigation in order to establish possible explanations.
AFRIKAANSE OPSOMMING: Die gebruik van hoë gelykspanning (HSGS) het baie gewild geword vir kragtransmissie oor lang afstande. Dit is as gevolg van die uitstekende voordele wat hierdie tipe tegnologie teenoor die tradisionele hoë wisselspanning (HSWS) bied. Hierdie paradigmaskuif in die ontwerp van kragstelsels het tot verhoogde belangstelling in navorsing gelei wat betrekking het op aspekte wat verband hou met die betroubaarheid van kragvoorsiening deur HSGS. Van hierdie aspekte word isolasiekoördinasie toenemend ʼn uitdagende taak en navorsing word tans daarop toegespits. Daar bestaan oortuigende bewyse, gebaseer op laboratorium- en veldtoetse dat isolatorbesoedeling ʼn verskynsel met vele fasette is, veral wanneer hoër spannings gebruik word. Dit is in „n meerdere mate van belang met verwysing na toepassings van HSGS. Die onlangs inbedryfgestelde HSGS kraglyn in Namibië is een van die hoofmotiverings vir die verskaffing van geldelike steun deur NamPower (Namibië se nasionale kragvoorsiener) vir navorsing oor die besoedelingsprestasie van isolators. Hierdie projek is deel van NamPower se navorsingsinisiatief om verskynsels betreffende die besoedelingsprestasie van isolators in natuurlik-besoedelde omgewings te ondersoek, onder WS en GS-bekragtiging. Die betekenis van hierdie navorsing is veral belangrik vir die HSGS-toepassings in die lig van die skaarsheid van navorsing oor die GS-prestasie van isolators in natuurlik-besoedelde omgewings. Hierdie studie is gedoen by die Koeberg isolatorbesoedelingstoetsstasie (KIPTS) aan die weskus van die Wes-Kaap. KIPTS is 'n internasionaal-erkende toetsfasiliteit en word algemeen gebruik deur beide isolatorvervaardigers en akademiese navorsers uit baie dele van die wêreld. STRI en ABB, albei Sweeds-gebaseerde maatskappye, is die goeie voorbeelde van die internasionale gebruikers van die KIPTS navorsingsfasiliteit. Die oogmerk van hierdie navorsing was om eerstens 'n geskikte GS-kragbron vir beide die GS+ en die GS- vir gebruik by KIPTS te ontwerp. Hierdie apparaat is ontwerp en gebou deur die Universiteit van Stellenbosch. Tweedens is 'n vergelykende evaluering van die prestasie hoë temperatuur gevulkaniseerde silikoon (HTV-SR) kraglynisolators onder WS, GS+ en GS– onder natuurlike besoedeling by die KIPTS uitgevoer. Alle toetsisolators is van dieselfde materiaal gemaak en is afkomstig van dieselfde vervaardiger, maar het verskillende kruipafstande. Vyf verskillende kruipafstande is gebruik vir elke tipe spanning  'n totaal van vyftien HTV-SR toets monsters. 'n Standaard GS glasisolatorskyf is ook vir elke spanning as' n kontrolemonster geïnstalleer. Dit kan dus verwag word dat hierdie studie aanleiding sal gee tot nuwe navorsingsvrae, wat kan lei tot verdere toekomstige ondersoeke oor die onderwerp. Met verwysing na die monitering van die weer en die lekstroommetings (met behulp van 'n aanlyn-lekstroommoniteringstoestel - OLCA), is 'n korrelasie gevind tussen die variasie in klimaatstoestande en die ooreenstemmende voorkoms van lekstroom op die isolator- oppervlaktes. Hoë lekstroomvlakke is waargeneem in die somer, as gevolg van die hoë besoedelingsvlakke wat in daardie seisoen gemeet is (met behulp van die ekwivalente soutneerslag-digtheid (ESDD) metode). In die winter, in teenstelling, is die laagste vlakke van lekstroom aangeteken. Dit stem ooreen met 'n hoë voorkoms van reënval in die winter, wat die isolatoroppervlaktes van tyd tot tyd natuurlik gewas het. Die lekstroomvlakke op die HTV-SR isolators was van soortgelyke ordegrootte vir WS en GS+ maar laer vir GS-. Dit is bevind dat die ergste besoedelingstowwe, met 'n hoë geleiding, soos gemeet met die rigtingsensitiewe stofneerslagsmeters (DDDG), hoofsaaklik uit ʼn suidelike rigting kom. As gevolg hiervan, is die meeste gevalle van erosie aan die suidekant van die toetsisolators waargeneem. Die waarneming van elektriese ontladingsaktiwiteit in die nag, het aan die lig gebring dat droëbandkorona (DBC) en droëbandontladings (DBD) prominent voorgekom het op die skedes aan die uiteindes (beide lewende en grond kante) en onderste kant van HTV-SR en glasskywe, onderskeidelik. Oorvonkings is waargeneem op die kortste HTV-SR isolator op GS+ en op die glasisolator op GS-. Al die oorvonkings het in die somer (die ergste seisoen by KIPTS) voorgekom. Twee interessante, dog onverklaarbare, verskynsels is waargeneem: stervormige erosie aan die onderkante van die skerms van die HTV-SR isolators op GS+ en material-afskilfering by die skerm-skede tussenvlak van die HTV-SR isolators op GS-. Hierdie verskynsels vereis verdere ondersoek ten einde moontlike verklarings vas te stel.
Style APA, Harvard, Vancouver, ISO itp.
23

Shifidi, S. K. "Modelling and performance evaluation of an HV impulse test arrangement with HVDC bias". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2722.

Pełny tekst źródła
Streszczenie:
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009.
ENGLISH ABSTRACT: From a systems operation and design perspective, it is important to understand the behaviour of HVDC system insulation when presented with high voltage transients, such as induced by lightning and switching operations. Therefore, this thesis investigates the design, operation and performance of a circuit arrangement that can be used in high voltage laboratories to generate impulse voltage waveforms superimposed on a dc bias voltage. The circuit arrangement consists of an impulse generator and a dc source that supplies continuous dc voltage to stress the test object, which can be any type of insulator, i.e. composite, porcelain, glass, gap arrangements, etc. The composite waveform obtained from the test arrangement is used experimentally to investigate the impulse flashover of insulators. For modelling and analysis purposes, the test circuit was transformed to a Laplace equivalent in order to derive the applicable nodal voltage equations. After substitution of circuit parameter values, the voltage equations are then transformed to time domain equations that predict the time-domain behaviour of the circuit. To validate this mathematical approach, the voltage waveforms obtained with this mathematical model is compared with the waveforms measured under laboratory conditions and also with waveforms simulated with HSPICE software. These comparisons are performed using graphical representations. Good correlation was obtained and the results are presented in this thesis. The final stage of this thesis discusses the application of the designed test arrangement for flashover and withstands tests on a silicon rubber insulator. The determination of the flashover values is done by using the existing statistical methods. The insulator was tested under dry conditions and also under polluted wet conditions for both positive and negative impulses compared to the DC bias voltage polarity. The results show that the dc bias voltage does not affect the total voltage flashover of the insulator significantly. It was also observed that wetting affects the flashover for negative impulse more severely, while the influence of wetting is minimal with positive impulse voltages
AFRIKAANSE OPSOMMING: Vanuit ‘n stelselbedryf en ontwerp perspektief, is dit is belangrik om die gedrag van HSGS stelsels te verstaan wanneer dit onderwerp word aan hoogspanning oorgangsverskynsels soos veroorsaak deur weerlig en skakeloperasies. Daarom ondersoek hierdie tesis die ontwerp, werking en werkverrigting van ‘n stroombaanopstelling wat gebruik kan word in hoogspanningslaboratoriums om impulsspannings gesuperponeer op gelykspanning voorspannings op te wek. Die stroombaan bestaan uit ’n impulsgenerator en ‘n gs-bron wat die langdurige gs-spanning voorsien aan die toetsvoorwerp, wat enige tipe isolator kan wees. bv. porselein, glas, gapings, ens. Die saamgestelde golfvorm wat met die toetsopstelling verkry word, is eksperimenteel gebruik om die impulsoorvonking van isolators te ondersoek. Vir die doel van modellering and analise, is die stroombaan na ‘n Laplace ekwivalent getransformeer om die toepaslike knooppunt spanningsvergelykings af te lei. Na substitusie van die stroombaan parameter waardes, word die spanningsvergelykings getransformeer na die tydgebied vergelykings wat die tydgebied gedrag van die stroombaan voorspel. Om die wiskundige benadering te toets, word die spanningsgolfvorms wat met die wiskundige model voorspel word, vergelyk met golfvorms wat onder laboratorium toestande gemeet is en ook met golfvorms wat met HSPICE programmatuur gesimuleer is. Hierdie vergelykings word gedoen met behulp van grafiese voorstellings. Goeie korrelasie is verkry en die resultate word in die tesis gegee. Die finale stadium van hierdie tesis bespreek die toepassing van die ontwerpte toetsopstelling vir oorvonk- en weerstaantoetse op ‘n silikonrubber isolator. Die bepaling van die oorvonkwaardes word gedoen deur bestaande statistiese metodes te gebruik. Die isolator is onder droë en nat besoedelde toestande gedoen, vir beide positiewe sowel as negatiewe impulse met verwysing na die GS voorspan spanning. Die resultate toon dat die gsvoorspanning nie die oorvonkspanning van die isolator beïnvloed nie. Dit is ook waargeneem dat die benatting die oorvonking neer beïnvloed met ‘n negatiewe impuls terwyl die invloed minimaal is met positiewe impulsspannings.
Style APA, Harvard, Vancouver, ISO itp.
24

Šedivý, Matúš. "Vliv vysokého napětí na různé materiály v nízkém a vysokém vakuu". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318194.

Pełny tekst źródła
Streszczenie:
The beginning of this thesis contains an overview of properties of the insulators, and description of insulators that were used for in depth research of surface breakdown in vacuum. Furthermore, this work focuses on mechanisms of an electric breakdown initiation at the interface of the solid insulator and surrounding low pressure gas. Multiple methods for measurements of dielectric strength are examined. The experimental part describes the measurements performed in the vacuum chamber. The results of these measurements are then analysed. In conclusion, used insulators are compared and suggestions for further work are given.
Style APA, Harvard, Vancouver, ISO itp.
25

Hsu, Yu-Hsiang, i 徐裕翔. "Insulators Characteristic Analysis of High Voltage Transmission Line". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/25928361618682554806.

Pełny tekst źródła
Streszczenie:
碩士
國立高雄應用科技大學
電機工程系
99
Insulators are used to insulate between overhead transmission lines and their supporting tower for power delivery. Due to Taiwan is a north-south elongated island surrounded by the sea, important electrical equipment are located near coastal areas, insulators are frequently polluted by salt fog damage and dust fog etc, and causes fouling. The polluted insulators usually results in blackout of either local area or whole area along the power transmission line. Therefore, their performance has great influence on the safe operation of power equipment. This thesis first uses an analyze software of Alternative Transient Program-Electromagnetic Transient Program(ATP-EMTP) to simulate and establish voltage distribution model under both normal and degraded cases for 69kV and 161kV transmission line. Second, insulator leakage current measurement device which designs stainless steel ring closure mounted on insulator’s film surface nearest the tower side to measure leakage current is developed. In measurement unit, dsPIC microprocessor is selected as core processor to form peak value counting circuit to record the number of peak value of leakage current through the insulator. Finally, proposed designed device is tested by autotransformer located at high voltage laboratory of Taiwan Power Research Institute to justify the effectiveness and practicality by results.
Style APA, Harvard, Vancouver, ISO itp.
26

Venkatesulu, B. "Studies On Polymeric Micro/Nanocomposites For Outdoor High Voltage Insulation". Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1185.

Pełny tekst źródła
Streszczenie:
Outdoor electrical insulator is one of the important components of a power system which directly influences the system reliability. Traditionally ceramic insulators have been used for close to a century in both transmission and distribution lines. In the last few decades, polymer based outdoor insulators are being increasingly used in the above application. Polymeric insulators offer attractive advantages such as light weight, resistance to vandalism and they also outperform conventional ceramic insulators under contaminated wet conditions at least in the initial stages of their usage. However, there are certain disadvantages with polymeric insulators which have made the utilities hesitant to replace readily the ceramic insulators with polymeric insulators. One of the major concerns with the polymeric insulators is the aging w.r.t time due to the presence of multiple environmental stresses (fog, humidity, temperature, rain as well as contamination due to industrial, sea and agricultural pollution) along with electrical stress. The manifestations of the aging of insulators include tracking or/and erosion of the weathersheds. Polymers in pure form (unfilled) can not perform satisfactorily all the required functions (electrical, mechanical, thermal etc.) of an insulator used in such high voltage transmission lines. Polymers have inherently poor thermal stability. Thermal stability directly influences the tracking and erosion resistance of the weathershed. Without adequate tracking and erosion resistance, polymeric insulators can not perform satisfactorily under contaminated wet conditions. Hence the common practice to improve the tracking and erosion resistance (and other properties such as mechanical, thermal) is by filling the base polymer with large loadings (> 30 wt %) of micron sized fillers. This makes the processing of the polymer composite difficult as the viscosity of the material rises substantially at such large loadings. Due to the large filler loadings beyond a certain limit, the flexibility of the end product also suffers. Though tracking and erosion resistance of the polymer has been improved substantially at these large filler loadings, the recent failures in the field suggest the need for an alternate material with higher tracking and erosion resistance than what is achieved at these large loadings of micron sized fillers. Of late nanocomposites are emerging as promising alternatives which can offer the above mentioned functionalities at low filler loadings itself without sacrificing the flexibility in the end product as well as ease of processing. There are even indications suggesting that the tracking and erosion resistance performance is better than what is obtained using micronsized fillers. As the development of nanocomposite dielectrics/insulation is still at its infancy, it is required to investigate their specific properties needed for outdoor applications and to understand the various mechanisms responsible for the interesting behaviour of the nanocomposites. Also, it is known that dc pollution performance of ceramic insulators is much inferior to the performance under ac stress. With the introduction of higher ac/dc transmission voltages in many countries including India, it is required to design insulators with better performing materials so as to get a reliable performance under polluted wet conditions. Due to the hydrophobic nature of the polymers, it is believed that polymers especially silicone rubber insulators can perform better as compared to the ceramic insulators under polluted conditions under ac and dc. As the dc tracking and erosion (T&E) resistance of polymer is poor compared to the ac tracking and erosion resistance, it is required to investigate the T&E resistance characteristics of the nanocomposites under dc stress. In addition, due to the enhanced electric fields at the line end of the insulators in extra and ultra high voltage transmission lines, there is always a possibility of corona generation on the hardware at the metal-sheath junction and at the water droplet tips on the weathersheds of the polymeric insulators especially under foul weather conditions. It is reported that the long-term exposure to such corona has the potential to degrade the polymeric material. The effects include reduction of the hydrophobicity, surface oxidation of the weathersheds and development of microcracks on the surface of the polymeric material. These cracks (corona cutting) can worsen the wet pollution performance of the insulator. If the cracks grow deeper, then FRP rod would get exposed to the atmospheric conditions leading to brittle fracture of the FRP rod and finally resulting in the line drop. Hence, the corona aging resistance of nanocomposites has also been studied especially at low filler concentrations to see its performance under the above mentioned adverse conditions. Therefore, the research work presented here deals with three aspects of the aging (1) Study the ac and dc tracking and erosion resistance performance of silicone rubber nanocomposites with low concentrations of fillers and their suitability for outdoor applications (2) Study the corona aging performance of silicone rubber nanocomposites with low concentrations of fillers and (3) To develop a model to explain the unusual behaviour of nanocomposites observed in the above studies. The thesis also reports results of the accelerated multistress weathering studies conducted on normal polymeric outdoor insulators under prolonged dry conditions. The major challenge in case of the polymer nanocomposite processing is getting uniform distribution of the fillers. A protocol has been standardised for the processing which comprises high shear mechanical mixing followed by sonication to get good dispersion of the fillers. Room Temperature Vulcanised (RTV) silicone rubber was successfully processed with different micron and nanosized fillers and with different weight (wt.) percentages in the present work. For carrying out the T & E resistance, corona aging and multistress aging studies, facilities (such as Inclined Plane T & E Resistance Test Apparatus in line with IEC/ASTM standards and aging chambers) have been designed and developed in house as a part of the thesis work. The ac tracking and erosion resistance performance of the unfilled, microcomposite (filled with alumina trihydrate filler of 5, 10, 15, 20 and 30 % by wt) and nanocomposite (filled with alumina, silica and magnesium hydroxide fillers of 2.5 and 4 % by wt) have been compared in inclined plane (IP) tracking and erosion resistance test facility specifically developed for the work. It was very interesting to observe that nanocomposites at 4 % performed on par with the microcomposites at 30 % filler loadings. Leakage current was also measured during the IP test and it was found that the form factor (ratio of r.m.s to average leakage current) was in good agreement with the variation in the erosion resistance of the silicone rubber composites and hence it can be used as a diagnostic tool for assessing the aging state of the polymeric materials. It was also observed that the performance under positive dc stress was much inferior to the performance under ac stress. The dissipation of power under dc stress was estimated by measuring the leakage current through the sample and is found to be about four times (towards the end of the test) higher as compared to the power dissipation under ac stress. Intense electrolytic corrosion has been observed (under positive dc) on the grounded electrode and on the sample and chemical studies of the same have been carried out. The poor performance under dc is due to the absence of the voltage zero crossing, more accumulation of the contaminant (scaling) and electrolytic corrosion. It was also observed that to get the same tracking and erosion resistance under dc as in the case of ac during IP test, dc stress levels have to be reduced to about 60 % of the ac stress. This information would be helpful to the design engineer of the outdoor insulators for the HVDC transmission lines. To understand the different mechanisms responsible in improving the tracking and erosion resistance of the micro and nanocomposites, thermal, SEM and FTIR studies have been carried out. Thermal stability of the samples was measured using thermogravimetric analysis (TGA) and differential thermo gravimetric (DTG) studies. It was observed that thermal stability of nanocomposites even at low filler loadings (4 wt %) was comparable with the microcomposites at higher filler loadings (30 wt %). SEM studies indicate that the barrier resistance (against discharges) offered by the fillers in the nanocomposites even at low filler loadings (4 %) could be comparable with the microcomposites at higher filler loadings (30 %). The interaction between the fillers and the host matrix has been studied using various techniques. SEM studies done on the eroded regions of the composites revealed that a honey comb type formation had taken place on the nanocomposites during the IP test which was believed to be due to the interaction of the filler and the polymer. This honey comb structure formation at the eroded site in the nanocomposites greatly helps to protect the sample from further damage due to the discharges. The interaction at the interface between the polymer and fillers could also lead to further improvement in the thermal stability of the nanocomposite. A model was proposed which considers barrier resistance and a single-layer interaction around the fillers to explain the improvements offered by the nanocomposites. Corona aging studies have been carried out on unfilled silicone rubber, micro and nanocomposites for 25 h and 50 h of aging using a needle-plane electrode arrangement. Different parameters such as hydrophobicity, surface roughness, microcracks width on the aged surface, FTIR and SEM studies were carried out to study the corona aging resistance of the new and aged samples. The studies indicate that silicone rubber samples containing nanofillers at 3 wt % are able to impart significantly enough corona resistance compared to the unfilled and microcomposite samples. It is known that the discharge resistance offered by the fillers and the interaction/bonding between the fillers and polymers directly influences the corona aging resistance. Hence, the model proposed (discussed above) is valid for understanding the corona aging performance of the nanocomposites which is better than the unfilled and ATH filled silicone rubber. In addition to the tracking and erosion resistance and corona aging studies, multistress aging of commercially available polymeric insulators containing micron sized fillers has been carried out. The aging behaviour of the polymeric insulators under tropical and subtropical conditions (in the absence of discharges under wet conditions) has not been explored. Further, the long-term influence of the UV radiation on silicone rubber in the presence of temperature and electric stress is also not explored. Hence, to understand the aging phenomena (weathering characteristics) under multistress (electric, thermal and UV), distribution class composite polymeric insulators were aged for 30,000 h in a multistress aging chamber developed specifically for the studies. Insulators were continuously subjected to the accelerated electric and thermal stresses as well as UV radiation. Different studies like leakage current, SEM, hydrophobicity, surface roughness and low molecular weight (LMW) molecules content in the samples before and after the aging have been investigated. It is interesting to observe that even in the absence of electrical discharges on the surface of the material, significant monotonous reduction in LMW molecules has been observed w.r.t weathering time. Appreciable increase in the surface roughness (at least 200 % as that of the new material) as well as increased oxygen levels on the surface has also been observed. The results indicate that surface hydrophobicity is dynamic in nature and may not reflect the slow and permanent changes taking place in the bulk of the material. The results obtained for the nanocomposites enable us to design a better material with improved tracking, erosion and corona resistance without sacrificing the flexibility in the end product as well as ease of processing. The silicone rubber nanocomposites also open up the possibility for economically designing a smart material possibly with a higher reliability for outdoor insulator application.
Style APA, Harvard, Vancouver, ISO itp.
27

Saboy, Gabiña Manuel Angel. "High voltage laboratory : simulation, adjustment and test on electrical insulators". Master's thesis, 2009. http://hdl.handle.net/10216/59330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Chakraborty, Rahul. "Studies on Silicone Rubber Insulators used for High Voltage Transmission". Thesis, 2017. http://etd.iisc.ernet.in/2005/3981.

Pełny tekst źródła
Streszczenie:
Recently high temperature vulcanized (HTV) silicone rubber (SIR) / polymeric/composite insulators are gaining wider acceptance as overhead transmission line insulators for extra high voltage (EHV) and ultra-high voltage (UHV) systems due to some promising features like hydrophobicity recovery, light weight, ease of handling and installation, better pollution ashover performance, admirable resistance against vandalism etc. Since polymeric insula-tors are of recent origin, their long-term eld performance is yet to be understood. Owing to their organic nature, and exposure to environmental stresses like pollution, temperature, UV radiation, humidity, fog, rain etc., the insulator performance degrades over a period. The sheds/petticoats of the insulators become wettable leading to frequent ashover in humid and contaminated environment. Hence, long term reliability of the composite insulators is of foremost concern to the power utilities. The available literature on the long term eld performance of these insulators for di erent climatic conditions and under multiple environ-mental stresses for both the HTV SIR and Liquid Silicone Rubber (LSR) is scant. Also there is no reference standard for evaluation of these insulators for pollution/contamination test methods in the laboratory. However currently, CIGRE Work Group is working towards the standardization of the test methods for arti cial pollution tests for polymeric insulators. The thesis addresses some of the issues in detail. In the first part of the thesis, a new and simple pre-treatment methodology to achieve uniform contamination layer on inherently hydrophobic HTV SIR Insulator samples is presented for laboratory pollution performance evaluation. The surface water level di usion in the dipping period is found to make the insulator surface temporarily hydrophilic. Then the uniform contamination layer is applied by dipping the sample immediately in the pollution slurry. Exhaustive experiments were conducted on full scale SIR insulators as well as SIR slabs to investigate the hydrophilicity appearance on the SIR surface. A specially fabricated arrangement for assessment of Wettability Class (WC) is made as per IEC stds. The results of WC measurement and wet ashover studies support the temporary reduction in hydrophobicity of SIR due to dipping phase in the proposed pre-treatment methodology. The next part of the thesis presents the results for the effeect of long term thermal aging experimentation conducted on HTV SIR with difffeerent degrees of pollution (medium, heavy), the effeect of arid desert climate on polymeric insulators is studied. The experimental set-up consists of controlled HVAC source, temperature controlled furnace with a provision for high voltage (HV) and Leakage Current (LC) monitoring, a Digital Storage Oscilloscope (DSO), compact DAQ-9201 of National Instruments operated in LabVIEW platform etc. Two types of HTV SIR Insulators are considered for the study. Flat slabs as well as full-scale insulator samples of creepage length 725 mm are stressed simultaneously to simulate the in-service condition. The experimentation is conducted for about 575 hours with application of 21.0 kVrms at 60oC. The results of the hydrophobicity recovery for thermally aged contaminated polymeric insulators are reported. Besides, monitoring electrical and mechanical proper-ties, changes in material properties of SIR are also analyzed using Physiochemical analysis techniques like Fourier transform infrared (FTIR) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC). Some of the key findings of the study are increased surface oxidation, surface roughness and mechanical stress due to thermal aging of polymeric insulators. Experimental investigations show that the characteristics of power frequency component of leakage current can be linked with thermal aging of SIR. Further, a unique climatic aging experimental facility is established to evaluate the long-term reliability of SIR under environmental stresses like UV, Humidity, temperature and applied electric stress. The investigations are conducted on two different types of HTV SIR and LSR at samples as well as full-scale insulator samples. The experimentation is conducted for 500 hours with 10.0 kVrms at 50oC, with 85% humidity and 1 W/m2 UV ir-radiation which is in accordance with the aging cycle specified in IEC standard. The results of the comparative studies conducted for the electrical, mechanical and material properties indicate leakage current pulses, brittleness, Salt deposition for multistress aged samples. In summary, an attempt has been made to contribute a pollution methodology with sim-ple pre-treatment technique for inherently hydrophobic HTV SIR surface to achieve better uniformity of contamination layer. Also, electro-thermal and multiple stresses investigations were conducted for long term performance on polymeric insulators.
Style APA, Harvard, Vancouver, ISO itp.
29

Saboy, Gabiña Manuel Angel. "High voltage laboratory : simulation, adjustment and test on electrical insulators". Dissertação, 2009. http://hdl.handle.net/10216/59330.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Schutte, Peet. "Voltage uprating of existing high voltage substations when transient voltage stress and available withstand strength are coordinated". Thesis, 2017. http://hdl.handle.net/10539/23546.

Pełny tekst źródła
Streszczenie:
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering in the High Voltage Research Group School of Electrical and Information Engineering Johannesburg, June 2017 South Africa
Servitude availability in space-constrained built-up areas within the Johannesburg or Central Load Network (CLN) poses every-day challenges for power system engineers. Strengthening the backbone 88/275 kV transmission system within the CLN becomes even more difficult when multi-circuit transmission lines are required for increased power transfer capabilities. When uprating is considered to increase the power transfer capability, the withstand levels of existing external insulation demands an optimisation to find a new stress versus strength balance that allows reliable operation of substations at higher voltages. The research includes primarily an investigative simulation study to evaluate the current Eskom available design clearances in terms of their withstand capability when subjected to over-voltage transients. Two voltage range classes were evaluated and the results are discussed. For voltage range 1, it was found that the over-voltage stress was low enough to allow for a higher nominal operating voltage while maintaining the existing clearances. For voltage range 2, existing clearances are also found to be conservative and smaller safety margins will most likely be acceptable. From a transient analysis evaluation, voltage uprating is considered as a very attractive option to increase the power transfer capability of existing substations. Current Eskom clearances for 88 kV and 275 kV are expected to perform well during transients generated in uprated systems. Electrode grading to improve the field gradients in the substation will require attention to increase gap factors. Additional surge arresters are considered to be a cost effective solution to control over-voltages throughout the whole uprated substation. The physical modification of substations to replace strung conductors with tubular conductors, ensuring sufficient outage time to refurbish and rebuild with new equipment will be the most challenging part of uprating existing substations.
MT 2017
Style APA, Harvard, Vancouver, ISO itp.
31

Azordegan, Ehsan. "Remote assessment of high voltage porcelain insulators using radiated electromagnetic field signature". 2016. http://hdl.handle.net/1993/30999.

Pełny tekst źródła
Streszczenie:
A novel approach for inspecting the condition of porcelain insulators based on statistical analysis of electromagnetic radiations of live insulators is demonstrated in this thesis. Physical defects such as puncture and contamination can degrade the insulators performance and result in power outages, potentiating costs to utilities. Therefore, condition assessment of line insulators has always been one of the most important aspects of maintenance programs in power networks. Realistic replicas of punctured and contaminated insulators were created in the High Voltage Lab at University of Manitoba, following the IEC standards. These defective insulators were tested under high voltage stress while the electromagnetic radiations originated from the partial discharge activities on the insulators were captured using electromagnetic sensors. During the experimental part of this thesis, a multitude of tests were conducted and resulted in measuring and recording a total of 410,000 cycles of discharge activities. The feature extraction algorithm, developed as part of this thesis, calculates the statistical features of the phase resolved interpretation of partial discharge (PD) pulses. The results of analyzing the extracted features from the radiated signature of defective insulators indicate that the scale and shape parameters of a two sided Weibull distribution function fit to the recorded measurement entail distinct information about the source of discharges that can be used to identify the source of defects. Based on the library of features extracted from the recorded electromagnetic radiations, a support vector machine (SVM) classier, developed as part of this thesis, can successfully classify the radiation signature of punctured and contaminated insulators. Therefore, the main outcome of this research was introducing a novel porcelain insulator inspection technique that can remotely differentiate the defective punctured and contaminated insulators using their electromagnetic radiation signature in a laboratory environment. By utilizing the signature of common discharge activities present in the recorded signature of all tested insulators, a gating algorithm was developed which improved the successful classification rate from 51 % to 75%. The inspection technique proposed in this research can eliminate the safety hazards involved in the live maintenance of line insulators, lower the maintenance costs, and improve the inspection efficiency considering the conventional labour intensive live maintenance assessments.
February 2016
Style APA, Harvard, Vancouver, ISO itp.
32

Chen, Wen-Shiush, i 陳文序. "Optimal Design of High Voltage Insulators Using Genetic Algorithm and Charge Simulation Method". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/73109168757420136285.

Pełny tekst źródła
Streszczenie:
博士
中原大學
電機工程研究所
96
Electrical field distribution along the insulator surface strongly depends upon the contour design, besides the effect of pollution. The insulator contour should be designed to reach a desired uniform and minimal tangential field to increase the onset voltage of surface flashover. This dissertation aims at the optimized contour designs of the high voltage support and suspension insulators using genetic algorithms and optimized charge simulation method. First, the dissertation proposes a combined approach of optimized charge simulation method (OCSM) and hashing integrated adaptive genetic algorithm (HAGA) to optimize the contour design of support insulators. In the combined approach, the HAGA determines the optimal displacement ratios and number of fictitious charges used in CSM, and then obtains the optimal contour design of support insulators to minimize and uniform the tangential electric field along the dielectric boundary. The proposed HAGA method considerably improves the execution efficiency by accessing the fitness values of the searched solutions saved a priori in a hashing table during the optimization process. To verify the effectiveness of the proposed method, three cases of different contours of support insulators have been studied. Second, in this dissertation, with the charge simulation method (CSM) integrated, the dynamically adjustable genetic algorithm (DAGA) approach is proposed for contour optimization of the suspension insulator. The aim of the contour optimization is at minimizing and uniforming the tangential electric field as well as minimizing the size of the suspension insulator, subjected to design constraints. In the proposed approach, the cubic spline function based on control (or contour) points on the insulator surface is optimized to derive the desired contour. Results show that more uniform and minimal tangential field distributions along the insulators surfaces can be effectively derived by the proposed approaches to achieve promising performance and high probability free from flashover. In addition, the smaller size of suspension insulator can be obtained through the proposed approach in comparison with the commercial insulator practically deployed in the transmission system.
Style APA, Harvard, Vancouver, ISO itp.
33

Chan, Hsien-Wu, i 詹顯武. "Design and Fabrication of Commercial Grade High Voltage Multilayer Ceramic Capacitors". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/y9x27v.

Pełny tekst źródła
Streszczenie:
碩士
國立中山大學
電機工程學系研究所
95
Multilayer ceramic capacitors (MLCCs) are typically manufactured as follows: First, stirring and mixing dielectric ceramic powders with a binder and a dispersion agent in a ball mill for several hours to prepare slurry having a desired viscosity. Next, a green sheet is prepared by a doctor blade method, wherein, the slurry is discharged onto a carrier film through a small orifice and the carrier film is pulled under a doctor blade or a slot die, which is set at a particular height to obtain a desired sheet thickness. The sheet is then dried to produce the green sheet. Then, a conductive paste is applied on a number of green sheets to form internal electrodes by screen-printing. The desired number of ceramic green sheets with internal electrodes are stacked and compressed to form a laminated body. The laminated body is then diced into a number of capacitor elements having a predetermined size. Thereafter the capacitor elements are through binder burnout and sintered then finally external electrodes are formed on opposite end portions of each of the capacitor elements to produce multiplayer ceramic capacitors. Once terminated, MLCC is typically electro-plated with a layer of nickel followed by a layer of tin in order to be surface-mountable. Surface mounting is soldering of components onto PCBs. The nickel layer is typically referred to as the barrier layer. Although nickel is solderable, it does not readily dissolve in molten solder as silver does. The end terminals when the capacitors are soldered to PCBs. Tin coatings serve to protect the nickel from oxidation and to make components readily solderable. Precious metal electrode (PME) system and solvent base are introduced in this report. Capacitors were fabricated from 22μm thick tapes consisting of ceramic powders (X7R AD292U, Degussa Corporation and NP0 VLF-220, MRA Laboratories, Inc.) that involves a sequence of a large number of processing steps, with production losses associated with each step. Optimized and controlled processing parameters can get reliable yield.
Style APA, Harvard, Vancouver, ISO itp.
34

Hopkins, Michael John. "Testing of the inter-turn insulation of high voltage induction motor coils". Thesis, 2015. http://hdl.handle.net/10539/16892.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Cormack, Roger. "Continuous on line relative tan delta monitoring of high voltage insulation". Thesis, 2004. http://hdl.handle.net/10413/4311.

Pełny tekst źródła
Streszczenie:
The thesis discusses the findings of an investigation into the use of novel condition monitoring techniques for oil-paper insulated high voltage equipment as used on the Eskom Main Transmission System. This research into the monitoring of the condition of high voltage (RV) insulation was undertaken because of the high failure rate of high voltage current transformers (eT's) and transformer bushings on the Eskom Transmission National Grid. These failures reached unacceptably high levels in the 1990's. The extent of failures has been quantified and was the driving motivation behind this research. Techniques for the condition assessment and condition monitoring of oil-paper filled high voltage equipment have traditionally focused on off-line techniques, in particular off-line tan delta measurements. This requires that the equipment be removed from service temporarily, but at widely spaced intervals before a measurement may be taken (typically every 3 to 6 years). Such techniques will not be able to detect faulty equipment where the insulation integrity deteriorates rapidly, resulting in catastrophic failure with risk to both adjoining equipment and personnel. The need for an on-line technique for detecting deteriorating insulation prior to failure was identified in the early 1990's and various systems were developed. This research investigation has focussed on assessing the use of on-line relative tan delta monitoring of RV insulation and compares this to off-line monitoring. In particular, the ability of such a relative tan delta measurement system to detect deteriorating oil-paper insulation has been assessed. The investigation has included the design, construction and commissioning of a dedicated test facility located at Eskom's Tugela substation. This test facility is unique in the world. This test facility has resulted in a number of experiments that have provided invaluable insight into possible failure modes of oil-filled high voltage equipment and the ability of on-line techniques to detect rapid failure modes has been carefully assessed. Further assessment of the on-line monitoring systems was also undertaken at various Eskom operational installations. The results of these tests and operational monitoring are addressed in this research. The research work and its findings are assessed against published literature and global activity in this important area.
Thesis (M.Sc.-Eng.)-University of KwaZulu-Natal, Durban, 2004.
Style APA, Harvard, Vancouver, ISO itp.
36

Tsai, Meng-Lun, i 蔡孟倫. "Design, fabrication and analysis of high-voltage thin-film GaN LEDs on ceramic substrates". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/d68tcw.

Pełny tekst źródła
Streszczenie:
博士
國立中央大學
光電科學與工程學系
102
In order to further push the performance/cost ratio of solid state lighting, LED manufacturing favors the products with high operation power and large chip sizes, which can greatly save material cost in device fabrication and packaging. However, the devices with increased input power and emitting area are constantly haunted by severe thermal degradation and current crowding, which are the contributing factors to the undesired efficiency droop. The problem is particularly difficult for sapphire-based devices considering the poor thermal conductivity of the substrate. In this dissertation, III–nitride blue LEDs were successfully fabricated on ceramic substrates (thermal conductivity: 230 W/m•K) using thin-film and high-voltage processes. In middle size aspect (508*1066 um2), we demonstrated ceramic-based high-voltage thin-film GaN LEDs comprising serially connected 31 sub-cells has 26.7% improvement in wall-plug efficiency at the current density of 200 A/cm2 comparing to 1*1 sub-cell owing to its superior current spreading. In large size aspect (1143*1143 um2), we designed ceramic-based high-voltage thin-film GaN LEDs comprising serially connected 2*2, 3*3 and 4*4 sub-cells, which are fabricated with different n-electrode areas to optimize the wall-plug efficiency. We found that although current spreading can be improved by increasing the cell numbers, leading to lower voltage/cell characteristic and enlarge emitting area. However, owing to the loss of emitting area caused by the increased area of isolation trenches, the output power and the wall-plug efficiency decrease when the cell number exceeds 9 (3*3). Furthermore, 2*2 and 3*3 sub-cells with 4.6% and 2.7% n-electrode/mesa respectively show the optimized design, the wall-plug efficiency are improved by 6.4% comparing to 1*1 sub-cell. We compared electrical-optical characteristics with increasing current density for large size (1143*1143 um2) light emitting diodes with three different kinds of structures. It include Si-based vertical thin-film LED, sapphire-based LED comprising serially connected 4*4 sub-cells and ceramic-based thin-film LED comprising serially connected 4*4 sub-cells. We found that although the current spreading of Si-based vertical thin-film LED worse than that of sapphire-based LED comprising serially connected 4*4 sub-cells, however, owing to better thermal conductivity of Si (thermal conductivity: 150 W/m•K) than sapphire (thermal conductivity: 36 W/m•K), the saturation current of Si-based vertical thin-film LED is superior to sapphire-based LED comprising serially connected 4*4 sub-cells. For the ceramic-based thin-film LED comprising serially connected 4*4 sub-cells, it simultaneously holds advantages on heat sinking and current spreading, leading to the saturation current density larger than 450 A/cm2, which is better than those of the devices fabricated with identical epitaxial structure on Si or sapphire substrates.
Style APA, Harvard, Vancouver, ISO itp.
37

Chuang, Yu-Jen, i 莊毓仁. "Reliability Assessment of High Voltage Multilayer Ceramic Capacitors Using Highly Step-Stress Accelerated Life Testing". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/09413675879423928200.

Pełny tekst źródła
Streszczenie:
碩士
國立彰化師範大學
機電工程學系
97
We present the reliability assessment on high voltage rated, surface mount multilayer ceramic capacitors (HV-MLCCs) using highly step-stress accelerated life testing which allows us rapidly estimate the reliability of devices, rather than the long test duration normally required from constant stress tests. The failure analysis by cross-sectioning was performed to identify the failure site and failure modes of HV-MLCCs, and the failure mechanism in advance. Devices were thoroughly characterized to evaluate their electrical performance, and a series of exterior inspections were performed prior to step-stress accelerated tests. The time to failure data is of grouping at specific times. The test results show that the cumulative damage model with an exponential life distribution are proper to evaluate the lifetimes of HV-MLCCs, and thus the mean life under the operation voltage (1000 VDC) at accelerated test temperature 125 oC is determined to be 1.8x104 hours. Using the Prokopowicz & Vaskas model, the mean life of the devices at the operation temperature 55 oC and storage temperature 25 oC are obtained to be 9.07x106 hours (1,036 years) and 3.20x108 hours (36,491 years) respectively. As the results, it is a reasonable lifetimes to MLCCs used in many applications. The failure analysis by cross-sectioning was performed to identify the failure site of HV-MLCCs. The failure mode in failed HV-MLCCs is internal cracks located within ceramic layers due to the larger breakdown electric field imposed by very high voltage. Some advices in materials design, such as higher insulation resistance and higher strength between electrodes and insulation, are proposed in order to improve the issue in terms of increasing the breakdown voltage and enhance the reliability of the device. On the other hand, the breakdown failures are often found in many insulation materials, and they fail in the same time so that it may explain HV-MLCC test data in group.
Style APA, Harvard, Vancouver, ISO itp.
38

Jyothi, N. S. "Thermal and Electrical Degradation of Resin Impregnated Paper Insulation for High Voltage Transformer Bushings". Thesis, 2014. http://hdl.handle.net/2005/3044.

Pełny tekst źródła
Streszczenie:
The overall reliability of a power transformer depends to a great extent on the sound operation of the bushings thereof. In view of its overwhelming advantages, resin impregnated paper (RIP) is acquiring prominence over conventional oil impregnated paper (OIP) in transformer bushings. The main advantages of RIP bushings are low dielectric loss and capability of positioning them at any desired angle over the transformer. The RIP structure, being an all-solid system, is completely free from oil phase. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. The degradation of dry-type insulation such as RIP is often due to thermal and electrical stresses. The long time performance thereof, depends strongly, on the maximum operating temperature. In order to be able to predict the regional temperature, it is necessary to consider the thermal and electrical parameters of insulation in question; and to identify and solve the governing equations under the relevant boundary conditions. Electrical failure of insulation is known to be an extremal random process wherein nominally identical specimens of equipment insulation, at constant stress fails at inordinately different times. In order to be able to estimate the life of power equipment like transformer bushing, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. The present work is an attempt to provide reliability and life estimation of High Voltage RIP bushing insulation. The literature survey carried out in this view indicate that investigation on thermal and electric field distribution and the models for failure under combined stress and analysis of the data so as to be able to estimate the possible life of RIP bushing is scanty. Having these aspects in focus, the scope of the present work is defined as: (i) Mapping of the temperature and electric field distribution in the body of 400kV RIP bushing (ii) Deduction of parameters of the probabilistic models for the failure under electrical and thermal ageing (iii) Estimation of life based on diagnostic testing using PD With this in view, the temperature distribution in the body of a 400kV RIP bushing is studied considering the heat generation both in central conductor and that in the insulation. Presence of multiple materials with non-confirming interfaces makes analytical solution rather difficult and hence numerical approach is adopted. In the present work, vertex-centered Finite Volume Method (FVM) is employed for both thermal and electrical analysis. The electric stress distribution is accurately evaluated considering both the non-zero conductivity of the RIP material and the presence of capacitive grading foils. These analysis has clearly shown that Stress grading foils uniforms the stress across the major portion of the bushing insulation Enhancement of the electric conductivity by the temperature is not found to be affective in changing the electric field distribution The temperature distribution is shown to have a maxima near the flange due to the influence of top oil temperature of the transformer Heat generated in the dielectric due to the prevailing electric stress is shown to be insignificant. This ruled out the possibility of thermal runaway and hence the dielectric temperature is within the safe working limits for the bushing considered. The deduction of physical models governing insulation failure depends on the nature of stress. In this work, the insulation failure at constant accelerated stress has been considered and the estimation of life is computed based on inverse power law coupled with Arrhenius law. A high degree of scatter is generic to the experimental data forming the ingredients to develop the models. In view of this, the concept of a random process is invoked. Probabilistic models for the failure of RIP bushing under synergy are adopted and an attempt is made to estimate the life. The well known Weibull distribution and probability plotting of life data is used in this endeavor. The maximum likelihood estimation is used to determine the scale and shape parameters of the Weibull distribution. In the diagnosis of the extent of degradation of insulation due to PD, under long duration electric stress, a non-conventional voltage application method called the classical stepped stress method is adopted. In this technique, the voltage is applied in pre-determined steps over predetermined duration of time. The magnitude of voltage steps is carefully computed based on Miners law and the end-of-life is computed using inverse power law. In summary, this thesis work has contributed to the thermal and electrical degradation of resin impregnated paper insulation for high voltage transformer bushing. The thermal and electrical field distributions computed in the body of bushing clearly shown that these stresses are well within the limit, thereby ruling out the possibility of a thermal runaway. Comparing the estimates of the most probable life of RIP, based on several methods appears to show that any of the method can be adopted. However, as matter of caution and safety, the lowest among them can be taken as a reasonable estimate.
Style APA, Harvard, Vancouver, ISO itp.
39

"Evaluation of Room Temperature Vulcanized (RTV) Silicone Rubber Coated Porcelain Post Insulators under Contaminated Conditions". Master's thesis, 2013. http://hdl.handle.net/2286/R.I.17904.

Pełny tekst źródła
Streszczenie:
abstract: This thesis concerns the flashover issue of the substation insulators operating in a polluted environment. The outdoor insulation equipment used in the power delivery infrastructure encounter different types of pollutants due to varied environmental conditions. Various methods have been developed by manufacturers and researchers to mitigate the flashover problem. The application of Room Temperature Vulcanized (RTV) silicone rubber is one such favorable method as it can be applied over the already installed units. Field experience has already showed that the RTV silicone rubber coated insulators have a lower flashover probability than the uncoated insulators. The scope of this research is to quantify the improvement in the flashover performance. Artificial contamination tests were carried on station post insulators for assessing their performance. A factorial experiment design was used to model the flashover performance. The formulation included the severity of contamination and leakage distance of the insulator samples. Regression analysis was used to develop a mathematical model from the data obtained from the experiments. The main conclusion drawn from the study is that the RTV coated insulators withstood much higher levels of contamination even when the coating had lost its hydrophobicity. This improvement in flashover performance was found to be in the range of 20-40%. A much better flashover performance was observed when the coating recovered its hydrophobicity. It was also seen that the adhesion of coating was excellent even after many tests which involved substantial discharge activity.
Dissertation/Thesis
M.S. Electrical Engineering 2013
Style APA, Harvard, Vancouver, ISO itp.
40

Σιδεράκης, Κυριάκος. "Διερεύνηση της συμπεριφοράς μονωτήρων πορσελάνης και υλικών RTV SIR σε πραγματικές και εργαστηριακές συνθήκες με μετρήσεις του ρεύματος διαρροής". Thesis, 2006. http://nemertes.lis.upatras.gr/jspui/handle/10889/574.

Pełny tekst źródła
Streszczenie:
Στην παρούσα διδακτορική διατριβή, διερευνήθηκε η συμπεριφορά μονωτήρων πορσελάνης και μονωτήρων πορσελάνης με επικάλυψη από RTV SIR, σε πραγματικές και εργαστηριακές συνθήκες, με μετρήσεις του ρεύματος διαρροής. Στην περίπτωση των μετρήσεων σε πραγματικές συνθήκες, με την χρήση κατάλληλου εξοπλισμού, κατέστη δυνατή η συνεχής καταγραφή της συμπεριφοράς δώδεκα μονωτήρων πορσελάνης 150kV, οι οποίοι αποτελούσαν ενεργές συνιστώσες δύο υποσταθμών του Συστήματος Μεταφοράς Κρήτης. Από αυτούς σε δέκα είχαν τοποθετηθεί επικαλύψεις από RTV SIR. Παράλληλα πραγματοποιήθηκαν και μετεωρολογικές μετρήσεις, σε συγχρονισμό με αυτές του ρεύματος διαρροής, δίνοντας την δυνατότητα συσχέτισης των μετεωρολογικών παραμέτρων με την αντίστοιχη συμπεριφορά των μονωτήρων. Οι μετρήσεις του ρεύματος διαρροής ανέδειξαν δύο περιόδους δραστηριότητας. Στην περίπτωση των μονωτήρων πορσελάνης η περίοδος αιχμής καταγράφεται στο τέλος της καλοκαιρινής περιόδου, από τον μήνα Αύγουστο μέχρι και τον Οκτώβριο. Τον υπόλοιπο χρόνο καταγράφεται δραστηριότητα, ιδιαίτερα την άνοιξη, σε σημαντικά χαμηλότερα επίπεδα όμως. Η συμπεριφορά αυτή είναι σε συμφωνία με την μηνιαία κατανομή των σφαλμάτων λόγω ρύπανσης στο Σύστημα Κρήτης, την περίοδο 1969 – 2005. Αντίθετα, στην περίπτωση των μονωτήρων με επικάλυψη από RTV SIR, την περίοδο από τον Αύγουστο μέχρι και τον Οκτώβριο, κατεγράφησαν εξαιρετικά χαμηλά ως και μηδενικά επίπεδα δραστηριότητας. Για τα υλικά αυτά, η αιχμή της επιφανειακής δραστηριότητας καταγράφεται κατά την χειμερινή περίοδο. Βέβαια πρέπει να σημειωθεί ότι ακόμη και τότε, η δραστηριότητα στην επιφάνεια των επικαλύψεων από RTV SIR είναι σαφώς ασθενέστερη σε σχέση με αυτήν των μονωτήρων πορσελάνης, το αντίστοιχο χρονικό διάστημα. Η ταυτόχρονη καταγραφή των μετεωρολογικών παραμέτρων ανέδειξε ως παράμετρο κλειδί τον παρατηρούμενο μηχανισμό ύγρανσης σε κάθε περίοδο. Η καλοκαιρινή αιχμή των μονωτήρων πορσελάνης αποδίδεται στην υγροσκοπική συμπεριφορά των ρύπων και στον μηχανισμό της συμπύκνωσης. Είναι σημαντικό ότι οι δύο αυτοί μηχανισμοί δεν μπορούν να μεταβάλουν την κατάσταση της επιφάνειας, ενώ προσβάλλουν το συνολικό μήκος ερπυσμού. Έτσι απουσία βροχοπτώσεων, ο φυσικός καθαρισμός των μονωτήρων το καλοκαίρι είναι δύσκολος, επιτρέποντας την προοδευτική συγκέντρωση της κρίσιμης ποσότητας ρύπανσης. Αντίθετα στους μονωτήρες με RTV SIR, παρά την παρουσία υγρασίας, διατηρείται η υδρόφοβη συμπεριφορά της επιφάνειας, η οποία επιβάλει τελικά την καταστολή της επιφανειακής δραστηριότητας. Αντίθετα τον χειμώνα, η εμφάνιση ασθενών βροχοπτώσεων μπορεί να οδηγήσει σε μεταβολή της κατάστασης της επιφάνειας των μονωτήρων. Στην περίπτωση της πορσελάνης προκύπτει ο καθαρισμός αυτής, ενώ στις επικαλύψεις από RTV SIR, όπου ο καθαρισμός είναι δυσκολότερος, παρατηρείται απώλεια της επιφανειακής υδροφοβίας, με αποτέλεσμα την καταγεγραμμένη δραστηριότητα. Είναι πάντως σημαντικό ότι σε κάθε περίπτωση, τα επίπεδα επιφανειακής δραστηριότητας στις επικαλύψεις από RTV SIR ήταν σαφώς χαμηλότερα από αυτά των μονωτήρων πορσελάνης. Στα πλαίσια των μετρήσεων σε πραγματικές συνθήκες, κατέστη δυνατή και η καταγραφή στιγμιότυπων του ρεύματος διαρροής. Στην περίπτωση των μονωτήρων πορσελάνης, προέκυψε ότι το απαιτούμενο ρεύμα για τον σχηματισμό ξηρών ζωνών, εξαρτάται από τον μηχανισμό ύγρανσης. Στην περίπτωση μηχανισμών όπως η συμπύκνωση, ένα ρεύμα της τάξης των 2mA αρκεί. Αντίθετα στην περίπτωση των βροχοπτώσεων έχουν καταγραφεί ρεύματα της τάξης των 15mA, χωρίς σημάδια ανάπτυξης ξηρών ζωνών. Η ανάπτυξη ξηρών ζωνών υποδηλώνεται στην κυματομορφή του ρεύματος από την εμφάνιση διαστημάτων μηδενικού ρεύματος σε κάθε ημιπερίοδο, τα οποία μάλιστα μεσολαβώντας μεταξύ των διαδοχικών εκκενώσεων υποδεικνύουν την ανεξαρτησία αυτών. Τα μη γραμμικά χαρακτηριστικά του ρεύματος στην περίπτωση αυτή αντικατοπτρίζονται στην εμφάνισης μιας συνιστώσας του ρεύματος στα 150Hz. Αυτά ισχύουν για το εύρος των τιμών ρεύματος που κατεγράφησαν στην περίπτωση αυτή (14mAIn the present study the performance of porcelain and RTV SIR coated porcelain insulators has been investigated in field and laboratory conditions, by leakage current measurements. In field conditions, by the use of the appropriate equipment it was possible to continuously monitor a group of twelve 150kV porcelain insulators, installed in two high voltage substations, of the Transmission System in Crete. Ten of them were coated with RTV SIR. In addition simultaneous measurements of meteorological parameters were performed, allowing the correlation of the LC measurements to the environmental conditions. The leakage current measurements performed indicated two periods of intense surface activity. In the case of porcelain, the summer period and especially the months From August to October, represent the period of intense surface activity. During the rest of the year the recorded LC levels are remarkably lower. This monthly distribution comes in agreement with the observed pollution flashovers distribution, for the period 1969-2005. The opposite activity distribution is observed for the RTV SIR coated insulators. In this case the levels of surface activity in the summer period are remarkably low and the period of intense activity for the coatings is observed during the winter. It is worth mentioning however that even in this case the levels of activity are remarkably lower than the corresponding levels in the case of porcelain, for the same time period. The opposite behavior of porcelain and coated porcelain insulators can be correlated to the environmental conditions and especially the wetting mechanism present. During the summer, insulator wetting is possible as the result of two mechanisms, the hydroscopic behavior of the pollution layer and condensation. Both mechanisms are capable of wetting the total leakage creepage distance, without cleaning the insulators surface in the same time. As a result a critical amount of pollution can be formed on the insulator surface, considering also the low levels of precipitation. So in the case of porcelain the formation of surface conductivity is possible in contradiction to the RTV SIR coated insulator, where the formed surface hydrophobicity is maintained. On the other hand during the winter, light precipitation can support the development of surface activity, since it is possible to disturb the surface condition. In the case of porcelain this will result to the cleaning of the surface. However in the case of RTV SIR coatings a loss of hydrophobicity is observed which allows the development of surface activity, considering also that cleaning is more difficult in this case. It is worth noticing however that in all cases the observed activity on the RTV SIR coated insulators is remarkably lower than the corresponding activity in the case of uncoated porcelain insulators. The leakage current waveforms for finite time periods are also included in the information provided by the field measurements performed. In the case of porcelain insulators, the analysis of the corresponding waveforms indicated that the current required for the formation of dry bands depends on the wetting mechanism present. In the case of mechanisms such as condensation, a current in the range of 1 – 2mA is capable to support the formation of dry bands. However in the case of precipitation the necessary current is higher, reaching a level of 15mA. Further the formation of dry bands is reflected to the leakage current waveform by zero current periods which are observed between the current conduction periods. This behavior indicates that the observed activity can be considered as a sequence of independent current pulses. Additionally the FFT analysis correlates the non linear current behavior to an increased 150Hz component. These characteristics have been traced in all the waveforms recorded, in the range from 14mA to 150mA. In the case of RTV SIR coated insulators the recorded waveforms are in large extent similar to the waveforms on the porcelain insulators. However additional phenomena, correlated with the existence of areas which maintain the hydrophobic behavior. In addition the non linear behavior is enhanced in this case, something that results in higher levels of a current component at 150Hz. The performance of the employed RTV SIR coatings was also investigated in laboratory conditions. Two tests were performed in a salt fog chamber, were the stress conditions are similar to the conditions observed in the case of light rain. The material performance observed and the corresponding measurements performed in both tests, indicate that the formulations tested, the endurance of the ATH filled coatings is higher than the silica filled, both in the case of corona and dry band discharge stress. The difference observed can be correlated with the action of each filler type. However the influence of the filler action needs to be further investigated.
Style APA, Harvard, Vancouver, ISO itp.
41

Πυλαρινός, Διονύσιος. "Διερεύνηση συμπεριφοράς μονωτήρων υψηλής τάσης μέσω μετρήσεων του ρεύματος διαρροής". Thesis, 2012. http://hdl.handle.net/10889/5428.

Pełny tekst źródła
Streszczenie:
Η παρακολούθηση του ρεύματος διαρροής, και ειδικά της κυματομορφής του, είναι μια ευρύτατα διαδεδομένη τεχνική για την παρακολούθηση της επιφανειακής δραστηριότητας και κατάστασης των μονωτήρων υψηλής τάσης. Η παρακολούθηση στο πεδίο είναι απαραίτητη για να υπάρξει μια πιστή καταγραφή της δραστηριότητας και συμπεριφοράς σε πραγματικές συνθήκες, παρουσιάζει όμως σημαντικές δυσκολίες. Το πρόβλημα συνήθως παρακάμπτεται με την καταγραφή και μελέτη εξαγόμενων μεγεθών όπως η τιμή κορυφής και το φορτίο, μία προσέγγιση που οδηγεί όμως σε αμφίβολα αποτελέσματα. Η παρούσα διατριβή επικεντρώνεται στην διερεύνηση και ταξινόμηση κυματομορφών ρεύματος διαρροής καταγεγραμμένων στο πεδίο. Αρχικά, παρατίθεται μια λεπτομερής ανασκόπηση της καταγραφής και ανάλυσης ρεύματος διαρροής σε εργαστηριακές και πραγματικές συνθήκες. Στην συνέχεια, περιγράφεται το πεδίο μετρήσεων, δύο Υποσταθμοί Υψηλής Τάσης 150kV, το αναπτυχθέν λογισμικό αλλά και ο Υπαίθριος Σταθμός Δοκιμών όπου πρόκειται να αξιοποιηθούν τα αποτελέσματα. Μελετώνται περισσότερες από 100.000 κυματομορφές, που έχουν καταγραφεί σε μια περίοδο που ξεπερνάει τα δέκα έτη. Εξετάζεται και αξιολογείται το πρόβλημα του θορύβου και ταυτοποιούνται τρεις διαφορετικοί τύποι θορύβου. Εξετάζεται η επίδρασή τους στο πρόβλημα συσσώρευσης δεδομένων αλλά και στην ποιότητα της εξαγόμενης πληροφορίας. Για την αντιμετώπιση του προβλήματος εφαρμόζονται και αξιολογούνται τρεις διαφορετικές τεχνικές. Για την περαιτέρω ταξινόμησή των κυματομορφών που απεικονίζουν δραστηριότητα, χρησιμοποιούνται διάφορες τεχνικές επεξεργασίας σήματος, εξαγωγής και επιλογής χαρακτηριστικών καθώς και αναγνώρισης προτύπων όπως η Wavelet Multi-Resolution Ανάλυση, η Ανάλυση Fourier, τα Νευρωνικά Δίκτυα, το t-test, ο αλγόριθμος mRMR, ο αλγόριθμος κ-πλησιέστερων γειτόνων, ο απλός Μπεϋζιανός ταξινομητής και οι Μηχανές Διανυσμάτων Υποστήριξης. Συγκεντρωτικά, δίνεται μια συνολική εικόνα των διαφορετικών ζητημάτων που σχετίζονται με την παρακολούθηση του ρεύματος διαρροής. Παρατίθεται μια πλήρης εικόνα των κυματομορφών όπως αυτές καταγράφονται σε πραγματικές συνθήκες, υπογραμμίζοντας ιδιαιτερότητες που σχετίζονται με την φύση της εφαρμογής. Εφαρμόζονται και αξιολογούνται νέες προσεγγίσεις για την ταξινόμηση των κυματομορφών. Τα συνολικά αποτελέσματα προσφέρουν σημαντική ενίσχυση στην αποτελεσματικότητα της τεχνικής της παρακολούθησης του ρεύματος διαρροής, συμβάλλοντας σημαντικά στην μελέτη της επιφανειακής δραστηριότητας και συμπεριφοράς των μονωτήρων υψηλής τάσης.
Leakage current monitoring is a widely applied technique for monitoring surface activity and condition of high voltage insulators. Field monitoring is necessary to acquire an exact image of activity and performance in the field. However, recording, managing and interpreting leakage current waveforms, the shape of which is correlated to surface activity, is a major task. The problem is commonly by-passed with the extraction, recording and investigation of values related to peak and charge, an approach reported to produce questionable results. The present thesis focuses on the investigation and classification of field leakage current waveforms. At first, a detailed background of measuring and analyzing leakage current both in lab and field conditions is provided. Then, the monitoring sites, two 150kV Substations, as well as the developed custom-made software and the newly constructed High Voltage Test Station where the results of this thesis are to be implemented, is briefly described. More than 100.000 waveforms are investigated, recorded through a period exceeding ten years. Field related noise is thoroughly described and evaluated. Three different types of noise are identified and their impact on the size of accumulated data and on data interpretation is investigated. Three different techniques to overcome the problem are applied and evaluated. Activity portraying waveforms are further investigated. Further classification of activity portraying waveforms is performed employing signal processing, feature extraction and selection algorithms as well as pattern recognition techniques such as Wavelet Multi-Resolution Analysis, Fourier Analysis, Neural Networks (NNs), student’s t-test, minimum Redundancy Maximum Relevance (mRMR), k-Nearest Neighbors (kNN), Naive Bayesian Classifier and Support Vector Machines (SVMs). Overall results provide a full image of the various aspects of field leakage current monitoring. A detailed image of field waveforms, revealing several new attributes, is documented. New approaches for the classification of leakage current waveforms are introduced, applied on field waveforms and evaluated. Results described in this thesis significantly enhance the effectiveness of the leakage current monitoring technique, providing a powerful tool for the investigation of surface activity and performance of high voltage insulators.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii