Artykuły w czasopismach na temat „High power fiber laser”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: High power fiber laser.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „High power fiber laser”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Wu, Hanshuo, Jiangtao Xu, Liangjin Huang, Xianglong Zeng i Pu Zhou. "High-power fiber laser with real-time mode switchability". Chinese Optics Letters 20, nr 2 (2022): 021402. http://dx.doi.org/10.3788/col202220.021402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shirakawa, Akira, i Ken-ichi Ueda. "High-Power, High-Brightness Fiber Laser". IEEJ Transactions on Electronics, Information and Systems 124, nr 7 (2004): 1367–74. http://dx.doi.org/10.1541/ieejeiss.124.1367.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Michalska, Maria, Paweł Grześ i Jacek Swiderski. "High power, 100 W-class, thulium-doped all-fiber lasers". Photonics Letters of Poland 11, nr 4 (31.12.2019): 109. http://dx.doi.org/10.4302/plp.v11i4.953.

Pełny tekst źródła
Streszczenie:
In this work, sub-kilowatt, compact thulium-doped fiber laser systems, operating at a wavelength of 1940 nm, have been presented. The continuous-wave laser power generated out of a single oscillator was 90 W with a slope efficiency of 56.7%. Applying a master oscillator – power amplifier configuration, an output power of 120.5 W with a slope efficiency of 58.2% was demonstrated. These are the first results of the works aimed at developing kW-class “eye-safe” laser systems in Poland. Full Text: PDF ReferencesZ. Liu, et al., "Implementing termination analysis on quantum programming", Sci. China Inf. Sci. 62, 41301 (2019) CrossRef S. D. Jackson, A. Sabella, D.G Lancaster, "Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 μm", IEEE J. Sel. Top. Quantum Electron. 13, 567, (2007). CrossRef E. Russell, N. Kavanagh, K. Shortiss, and F. C. G. Gunning, "Development of thulium-doped fibre amplifiers for the 2μm waveband", Proc. SPIE 10683, 106832Q (2018) CrossRef P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, "Theoretical modelling of S-band thulium-doped silica fibre amplifiers", Opt. Quantum Electron. 36, 201 (2004) CrossRef M. Eichhorn, "Pulsed 2 μm fiber lasers for direct and pumping applications in defence and security", Proc. SPIE 7836, 78360B (2010). CrossRef O. Traxer and E. X. Keller, "Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser", World J. Urol. 2019 Feb 6. doi: 10.1007/s00345-019-02654-5 CrossRef S. Das, "Optical parametric oscillator: status of tunable radiation in mid-IR to IR spectral range based on ZnGeP2 crystal pumped by solid state lasers", Opt. Quant. Electron. 51, 70 (2019) CrossRef M. Michalska, P. Hlubina, and J. Swiderski, "Mid-infrared Supercontinuum Generation to ∼4.7 μm in a ZBLAN Fiber Pumped by an Optical Parametric Generator", IEEE Photon. J 9, 3200207 (2017) CrossRef https://www.ipgphotonics.com DirectLink M.D. Burns, P. C. Shardlow, P. Barua, T. L. Jefferson-Brain, J. K. Sahu, and W. A.Clarkson, "47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser", Opt. Lett. 44, 5230 (2019) CrossRef S.D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers", Opt. Commun. 230, 197 (2004). CrossRef X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, "102 W monolithic single frequency Tm-doped fiber MOPA", Opt. Express 21, 32386 (2013) CrossRef K. Yin, R. Zhu, B. Zhang, G. Liu, P. Zhou, and J. Hou, "300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser", Opt. Express 24, 11085 (2016) CrossRef G. D. Goodno, L. D. Book, and J. E. Rothenberg, "600-W, single-mode, single-frequency thulium fibre laser amplifier", Proc. SPIE 7195, 71950Y (2009). CrossRef T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, "1-kW, all-glass Tm: fiber laser", Proc. SPIE 7580, 1 (2010) DirectLink M. Michalska et al., "Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery", Laser Phys. Lett. 13, 115101 (2016). CrossRef
Style APA, Harvard, Vancouver, ISO itp.
4

Franczyk, Marcin, Dariusz Pysz, Filip Włodarczyk, Ireneusz Kujawa i Ryszard Buczyński. "Yb3+ doped single-mode silica fibre laser system for high peak power applications". Photonics Letters of Poland 12, nr 4 (31.12.2020): 118. http://dx.doi.org/10.4302/plp.v12i4.1075.

Pełny tekst źródła
Streszczenie:
We present ytterbium doped silica single-mode fibre components for high power and high energy laser applications. We developed in-house the fibre laser with high efficiency of 65% according to the launched power, the threshold of 1.16W and the fibre length of 20 m. We also elaborated the fibre with 20 µm in diameter core suitable for amplifying the beam generated in oscillator. We implemented made in-house endcaps to prove the utility of the fibre towards high peak power applications. Full Text: PDF ReferencesStrategies Unlimited, The Worldwide Market for Lasers: Market Review and Forecast, 2020 DirectLink J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, "Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers", Opt. Express 19, 18645 (2011) CrossRef IPG Photonics, Product information, accessed: October, 2020. DirectLink J.W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power", Opt. Express 16, 13240 (2008) CrossRef W. Koechner, "Solid-State Laser Engineering", Springer Series in Optical Science, Berlin 1999 CrossRef A. V. Smith, and B. T. Do, "Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm", Appl. Opt. 47, 4812 (2008), CrossRef M. N. Zervas, C. Codemard, "High Power Fiber Lasers: A Review", IEEE J. Sel. Top. Quantum Electron. 20, 1, 2014 CrossRef D.J. Richardson, J. Nilsson, and W.A. Clarkson, "High power fiber lasers: current status and future perspectives [Invited]", J. Opt. Soc. Am. B, 27, 63, 2010, CrossRef M. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton; L. A. Zenteno, "Limit of Effective Area for Single-Mode Operation in Step-Index Large Mode Area Laser Fibers", J. Lightw. Technol., 27, 3010, 2009, CrossRef J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann., S. Knoke, and H. Voelckel, "100-W average-power, high-energy nanosecond fiber amplifier", App.Phys.B 75, 477, 2002, CrossRef
Style APA, Harvard, Vancouver, ISO itp.
5

Encai Ji, Encai Ji, Qiang Liu Qiang Liu, Zhenyue Hu Zhenyue Hu, Ping Yan Ping Yan i and Mali Gong and Mali Gong. "High-power, high-energy Ho:YAG oscillator pumped by a Tm-doped fiber laser". Chinese Optics Letters 13, nr 12 (2015): 121402–6. http://dx.doi.org/10.3788/col201513.121402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kah, Paul, Jinhong Lu, Jukka Martikainen i Raimo Suoranta. "Remote Laser Welding with High Power Fiber Lasers". Engineering 05, nr 09 (2013): 700–706. http://dx.doi.org/10.4236/eng.2013.59083.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yu Miao, Yu Miao, Hanwei Zhang Hanwei Zhang, Hu Xiao Hu Xiao i Pu Zhou Pu Zhou. "High-power diode-pumped ytterbium-doped fiber laser at 1150 nm". Chinese Optics Letters 12, nr 9 (2014): 091403–91406. http://dx.doi.org/10.3788/col201412.091403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wen Dai, Wen Dai, Youjian Song Youjian Song, Bo Xu Bo Xu, Amos Martinez Amos Martinez, Shinji Yamashita Shinji Yamashita, Minglie Hu Minglie Hu i Chyingyue Wang Chyingyue Wang. "High-power sub-picosecond all-fiber laser source at 1.56 lm". Chinese Optics Letters 12, nr 11 (2014): 111402–4. http://dx.doi.org/10.3788/col201412.111402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mengli Liu, Mengli Liu, Wenjun Liu Wenjun Liu, Peiguang Yan Peiguang Yan, Shaobo Fang Shaobo Fang, Hao Teng Hao Teng i Zhiyi Wei Zhiyi Wei. "High-power MoTe2-based passively Q-switched erbium-doped fiber laser". Chinese Optics Letters 16, nr 2 (2018): 020007. http://dx.doi.org/10.3788/col201816.020007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Zeng, Lingfa, Xiaolin Wang, Yun Ye, Li Wang, Baolai Yang, Xiaoming Xi, Peng Wang i in. "High Power Ytterbium-Doped Fiber Lasers Employing Longitudinal Vary Core Diameter Active Fibers". Photonics 10, nr 2 (31.01.2023): 147. http://dx.doi.org/10.3390/photonics10020147.

Pełny tekst źródła
Streszczenie:
Thanks to the advantage of balancing nonlinear effects and transverse mode instability, vary core diameter active fiber (VCAF) has been widely used in high power ytterbium-doped fiber lasers in recent years. Up to now, VCAF has developed from the basic form of the original tapered fiber to the spindle-shaped and saddle-shaped fiber with different characteristics and has been applied in conventional fiber lasers, oscillating–amplifying integrated fiber lasers, and quasi-continuous wave fiber lasers and successfully improved the performance of these lasers. In the present study, a 6110 W fiber laser amplifier is realized based on a tapered fiber. The maximum output power of a fiber laser amplifier based on spindle-shaped fibers is 6020 W with a beam quality of M2~1.86. In this paper, we first introduce the basic concept of VCAF and summarize its main fabrication methods and advantages in high-power fiber laser applications. Then, we will present the recent research results of high-power fiber laser employing VCAF in our group and clarify the outstanding advantages of VCAF compared with the constant core diameter active fiber (CCAF).
Style APA, Harvard, Vancouver, ISO itp.
11

An, Yi, Fengchang Li, Huan Yang, Xiao Chen, Liangjin Huang, Zhiping Yan, Min Jiang i in. "Single Trench Fiber-Enabled High-Power Fiber Laser". Photonics 11, nr 7 (28.06.2024): 615. http://dx.doi.org/10.3390/photonics11070615.

Pełny tekst źródła
Streszczenie:
As a novel design of large-mode-area fiber, the single trench fiber (STF) providing high higher-order-mode suppression with a large mode area for the fundamental mode shows potential for high-power and high-brightness applications. However, the output power of STFs has remained relatively low over the past decade. In this paper, we first conducted a design process for STFs and determined the optimal ratio of the fiber structural parameters. Following this ratio, we fabricated an ytterbium-doped STF and demonstrated an all-fiberized fiber amplifier. The system achieved an output power of 2.5 kW with an M2 factor of 1.396. To the best of our knowledge, the power of the STF in this study is approximately three times higher than the previous single-mode power record.
Style APA, Harvard, Vancouver, ISO itp.
12

Sun, Jiapo, Lie Liu, Lianghua Han, Qixin Zhu, Xiang Shen i Ke Yang. "100 kW ultra high power fiber laser". Optics Continuum 1, nr 9 (22.08.2022): 1932. http://dx.doi.org/10.1364/optcon.465836.

Pełny tekst źródła
Streszczenie:
Based on the self-developed non-photodarkening large mode field gain fiber and the 976 nm wavelength-locked high-power and high-brightness pump source, and using the secondary fiber power combining technology, a high-performance 100kW fiber laser in China was built, realizing high-order mode and non-linear effect suppression. The maximum output power of the laser can reach 101.65 kW, the center wavelength is 1080 ± 5 nm, the spectral bandwidth is (3dB) 5-8 nm, the output fiber core diameter is 400µm, the beam quality BPP is 19.28 mm*mrad, and the laser power instability is ±1.1%. Its laser non-destructive cladding stripping technology, distortion-free taper technology, inclined multi-die beam combining technology and circular inner cladding modification design have all reached the international advanced level.
Style APA, Harvard, Vancouver, ISO itp.
13

Limpert, J., F. Roser, T. Schreiber i A. Tunnermann. "High-power ultrafast fiber laser systems". IEEE Journal of Selected Topics in Quantum Electronics 12, nr 2 (marzec 2006): 233–44. http://dx.doi.org/10.1109/jstqe.2006.872729.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Limpert, Jens, Fabian Röser, Thomas Schreiber, Inka Manek-Hönninger, Francois Salin i Andreas Tünnermann. "Ultrafast high power fiber laser systems". Comptes Rendus Physique 7, nr 2 (marzec 2006): 187–97. http://dx.doi.org/10.1016/j.crhy.2006.01.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Chen, Xi, Wei Li, Chao Yang i Ning Yang. "High-power fiber laser combination technology". Frontiers of Optoelectronics in China 2, nr 3 (10.07.2009): 264–68. http://dx.doi.org/10.1007/s12200-009-0035-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Février, Sébastien, Dmitry D. Gaponov, Philippe Roy, Mikhail E. Likhachev, Sergei L. Semjonov, Mikhail M. Bubnov, Evgeny M. Dianov i in. "High-power photonic-bandgap fiber laser". Optics Letters 33, nr 9 (29.04.2008): 989. http://dx.doi.org/10.1364/ol.33.000989.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Grzegorczyk, Adrian, i Marcin Mamajek. "A 70 W thulium-doped all-fiber laser operating at 1940 nm". Photonics Letters of Poland 11, nr 3 (30.09.2019): 81. http://dx.doi.org/10.4302/plp.v11i3.928.

Pełny tekst źródła
Streszczenie:
An all-fiber thulium-doped fiber laser operating at a wavelength of 1940 nm is reported. A maximum output continuous-wave power of 70.7 W with a slope efficiency of 59%, determined with respect to the absorbed pump power, was demonstrated. The laser delivered almost a single-mode beam with a beam quality factor of < 1.3.Full Text: PDF ReferencesM. N. Zervas and C. A. Codemard, "High Power Fiber Lasers: A Review", IEEE J. Sel. Top. Quantum Electron. 20, 0904123 (2014). CrossRef D. J. Richardson, J. Nilsson, and W. A. Clarkson. "High power fiber lasers: current status and future perspectives [Invited]", J. Opt. Soc. Am. B 27, B63 (2010). CrossRef J. Swiderski, A. Zajac, and M. Skorczakowski, "Pulsed ytterbium-doped large mode area double-clad fiber amplifier in MOFPA configuration", Opto-Electron. Rev. 15, 98 (2007). CrossRef M. Eckerle et al. "High-average-power actively-modelocked Tm3+ fiber lasers", Proc. SPIE 8237, 823740 (2012). CrossRef J. Swiderski, D. Dorosz, M. Skorczakowski, and W. Pichola, "Ytterbium-doped fiber amplifier with tunable repetition rate and pulse duration", Laser Phys. 20, 1738 (2010). CrossRef P. Grzes and J. Swiderski, "Gain-Switched 2-μm Fiber Laser System Providing Kilowatt Peak-Power Mode-Locked Resembling Pulses and Its Application to Supercontinuum Generation in Fluoride Fibers", IEEE Phot. J. 10, 1 (2018). CrossRef S. Liang et al. "Transmission of wireless signals using space division multiplexing in few mode fibers", Opt. Express 26, 6490 (2018). CrossRef J. Swiderski, M. Michalska, and P. Grzes, "Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier", Appl. Phys. B 124, 152 (2018). CrossRef F. Zhao et al. "Electromagnetically induced polarization grating", Sci. Rep. 8, 16369 (2018). CrossRef J. Sotor et al. "Ultrafast thulium-doped fiber laser mode locked with black phosphorus", Opt. Lett. 40, 3885 (2015). CrossRef M. Olivier et al. "Femtosecond fiber Mamyshev oscillator at 1550 nm", Opt. Lett. 44, 851 (2019). CrossRef J. Swiderski and M. Michalska, "Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er:Yb-doped and Tm-doped fiber amplifiers", Opt. Laser Technol. 52, 75 (2013). CrossRef C.Yao et al. "High-power mid-infrared supercontinuum laser source using fluorotellurite fiber", Optica 5, 1264 (2018). CrossRef J. Swiderski and M. Maciejewska, "Watt-level, all-fiber supercontinuum source based on telecom-grade fiber components", Appl. Phys. B 109, 177 (2012). CrossRef O. Traxer and E. X. Keller, "Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser", World J. Urol., 1-12 (2019). CrossRef M. Michalska, et al. "Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery", Laser Phys. Lett. 13, 115101 (2016). CrossRef R. L. Blackmon et al. "Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber", Opt. Eng., 54, 011004 (2015). CrossRef A. Zajac et al. "Fibre lasers – conditioning constructional and technological", Bull. Pol. Ac.: Tech. 58, 491 (2010). CrossRef C. Guo, D. Shen, J. Long, and F. Wang, "High-power and widely tunable Tm-doped fiber laser at 2 \mu m", Chin. Opt. Lett. 10, 091406 (2012). CrossRef F. Liu et al. "Tandem-pumped, tunable thulium-doped fiber laser in 2.1 μm wavelength region", Opt. Express 27, 8283 (2019). CrossRef H. Ahmad, M. Z. Samion, K. Thambiratnam, and M. Yasin, "Widely Tunable Dual-Wavelength Thulium-doped fiber laser Operating in 1.8-2.0 mm Region", Optik 179, 76 (2019). CrossRef N. M. Fried, "Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110‐watt Thulium fiber laser at 1.94 µm", Lasers Surg. Med. 37, 53 (2005). CrossRef N. M. Fried, "High‐power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 μm", Lasers Surg. Med. 36, 52 (2005). CrossRef E. Lippert et al. "Polymers Designed for Laser Applications-Fundamentals and Applications", Proc. SPIE 6397, P639704 (2006). CrossRef N. Dalloz et al. "High power Q-switched Tm3+, Ho3+-codoped 2μm fiber laser and application for direct OPO pumping", Proc. SPIE 10897, 108970J (2019). CrossRef N. J. Ramírez-Martinez, M. Nunez-Velazquez, A. A. Umnikov, and J. K. Sahu, "Highly efficient thulium-doped high-power laser fibers fabricated by MCVD", Opt. Express 27, 196 (2019). CrossRef T. Ehrenreich et al. "1-kW, All-Glass Tm:fiber Laser", Proc. SPIE 7580, 758016 (2010). DirectLink L. Shah et al. "Integrated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power", Opt. Express 20, 20558 (2012). CrossRef H. Zhen-Yue, Y. Ping, X. Qi-Rong, L. Qiang, and G. Ma-Li, "227-W output all-fiberized Tm-doped fiber laser at 1908 nm", Chin. Phys. B 23, 104206 (2014). CrossRef
Style APA, Harvard, Vancouver, ISO itp.
18

KAN, Hirofumi, Hirofumi MIYAJIMA, Shinichi FURUTA, Hideki SUZUKI, Takayuki UCHIYAMA, Satoru OISHI, Takeshi KANZAKI i Teruo HIRUMA. "High-Power, High-Efficiency Laser Diodes for Pumping Fiber Lasers". Review of Laser Engineering 31, nr 8 (2003): 519–24. http://dx.doi.org/10.2184/lsj.31.519.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Liu, Hong, i Wei Da Zhan. "Research on High-Power, High-Speed Laser Modulation and Enlarge Experiment". Applied Mechanics and Materials 721 (grudzień 2014): 579–82. http://dx.doi.org/10.4028/www.scientific.net/amm.721.579.

Pełny tekst źródła
Streszczenie:
A laser modulation and amplification system is designed to meet the demand of long-range space optical communication, which uses the high-speed semiconductor laser to integrate electro-absorption (EA) modulator as a seed source. Two optical fiber amplifier technologies are used. The erbium-doped fiber amplifier (EDFA) and single-mode semiconductor laser pumping are used in the first-level; erbium ytterbium co-doped fiber amplifier (EYDFA) and 2-4 multimode fiber laser pumping with good temperature characteristics are used in the second level, and the control method is automatic gain control. The experimental result shows that the modulation rate achieves to 10Gbps, and the output optical power achieves to 5W.
Style APA, Harvard, Vancouver, ISO itp.
20

Eidam, Tino, Sven Breitkopf, Oliver Herrfurth, Fabian Stutzki, Marco Kienel, Steffen Hädrich, Christian Gaida i Jens Limpert. "High-power ultrafast fiber lasers for materials processing". Advanced Optical Technologies 10, nr 4-5 (15.10.2021): 277–83. http://dx.doi.org/10.1515/aot-2021-0033.

Pełny tekst źródła
Streszczenie:
Abstract State-of-the-art fiber-laser systems can deliver femtosecond pulses at average powers beyond the kilowatt level and multi-mJ pulse energies by employing advanced large-mode-area fiber designs, chirped-pulse amplification, and the coherent combination of parallel fiber amplifiers. By using sophisticated coherent phase control, one or even several output ports can be modulated at virtually arbitrary power levels and switching speeds. In addition, an all-fiber setup for GHz-burst generation is described allowing to access an even wider range of laser parameters. The combination of all these approaches together with the robustness, efficiency, and excellent beam quality inherent to fiber-laser technology has the potential to strongly improve existing materials-processing applications.
Style APA, Harvard, Vancouver, ISO itp.
21

Wang, Xiong, Pu Zhou, Yu Miao, Hanwei Zhang, Hu Xiao, Xiaolin Wang i Zejin Liu. "Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser". Journal of the Optical Society of America B 31, nr 10 (26.09.2014): 2476. http://dx.doi.org/10.1364/josab.31.002476.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Cooper, M. A., J. Wahlen, S. Yerolatsitis, D. Cruz-Delgado, D. Parra, B. Tanner, P. Ahmadi i in. "2.2 kW single-mode narrow-linewidth laser delivery through a hollow-core fiber". Optica 10, nr 10 (22.09.2023): 1253. http://dx.doi.org/10.1364/optica.495806.

Pełny tekst źródła
Streszczenie:
Antiresonant hollow-core fibers (AR-HCFs) have opened up exciting possibilities for high-energy and high-power laser delivery because of their exceptionally low nonlinearities and high damage thresholds. While these fiber designs offer great potential for handling kilowatt-class powers, it is crucial to investigate their performance at multi-kW power levels. Until now, transmission of narrow-linewidth single-mode lasers at multi-kW power levels through a HCF has not been demonstrated, to our knowledge. Here, we present the delivery of a record 2.2 kW laser power with an input spectral linewidth of 86 GHz, centered at 1080 nm, while maintaining 95% transmission efficiency and beam quality (M2) of 1.03. This was achieved via a 104.5 m single-mode five-tube nested AR-HCF with 0.79 dB/km loss. Furthermore, we show power delivery of 1.7 kW with a spectral linewidth as narrow as 38 GHz through the same fiber. Our results could lead to a new generation of fiber-based laser beam delivery systems with applications in precision machining, nonlinear science, directed energy, and power beaming over fiber.
Style APA, Harvard, Vancouver, ISO itp.
23

Li, Feng, Zhi Yang, Zhiguo Lv, Yang Yang, Yishan Wang, Xiaojun Yang, Wei Zhao, Qianglong Li i Yufeng Wei. "Direct Amplification of High Energy Pulsed Laser in Fiber-Single Crystal Fiber with High Average Power". Crystals 9, nr 4 (21.04.2019): 216. http://dx.doi.org/10.3390/cryst9040216.

Pełny tekst źródła
Streszczenie:
A laser master oscillator power amplifier (MOPA) system consisting of a fiber amplifier and a two-stage Yb:YAG single crystal fiber (SCF) is experimentally studied. The nonlinear stimulated Raman scattering (SRS) is avoided by limiting the output power of the fiber preamplifier to 600 mW. Due to the benefit from the low nonlinearity and high amplification gain of the SCF, a laser pulse duration of 16.95 ps and a high average power of 41.7 W at a repetition rate of 250 kHz are obtained by using a two-stage polarization controlled double-pass amplification of Yb:YAG SCF, corresponding to an output energy of 166.8 μJ and a peak power of 9.84 MW, respectively. The polarization controlled SCF amplification scheme achieved a gain as high as more than 69 times. During the amplification, the spectra gain narrowing effect and the polarization controlled four-pass amplification setup are also studied. The laser spectrum is narrowed from over 10 nm to less than 3 nm, and the pulse width is also compressed to hundreds of femtosecond by dechirping the laser pulse. This compact-sized, cost-effective laser source can be used in laser micromachining, or as the seeder source for generating much higher power and energy laser for scientific research. For some applications which need femtosecond laser, this laser source can also be compressed to femtosecond regime.
Style APA, Harvard, Vancouver, ISO itp.
24

Zhang, Haitao, Jiaqi Zu, Xiaozheng Liu, Junyu Chen i Haozhen Xu. "High Power All-Fiber Supercontinuum System Based on Graded-Index Multimode Fibers". Applied Sciences 12, nr 11 (30.05.2022): 5564. http://dx.doi.org/10.3390/app12115564.

Pełny tekst źródła
Streszczenie:
An all-fiber supercontinuum source based on graded-index multimode fibers is reported. The supercontinuum source is based on a homemade mode-locked oscillator and a three-stage picosecond amplifier, which obtained the supercontinuum by a graded-index multimode fiber. The laser output with a spectral range of 480–2440 nm, an average power of 25 W, and a repetition frequency of 8.27 MHz is obtained. To the best of our knowledge, this is the highest average power for generating a supercontinuum with an all-fiber structure based on the graded-index fiber. The effects of GRIN fiber length and different pump peak powers on the supercontinuum generation are also verified. The results showed that the graded-index multimode fiber can effectively obtain a supercontinuum with high power.
Style APA, Harvard, Vancouver, ISO itp.
25

Songtao, Songtao, Ziwei Wang Ziwei Wang, Zhaokun Wang Zhaokun Wang, Jing He Jing He, Jun Zhou Jun Zhou i Qihong Lou Qihong Lou. "All-fiber, high-average-power nanosecond laser based on core-diameter adjustment". Chinese Optics Letters 11, nr 9 (2013): 091402–91404. http://dx.doi.org/10.3788/col201311.091402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Wen Dai, Wen Dai, Youjian Song Youjian Song, Bo Xu Bo Xu, Amos Martinez Amos Martinez, Shinji Yamashita Shinji Yamashita, Minglie Hu Minglie Hu i Chyingyue Wang Chyingyue Wang. "High-power sub-picosecond all-fiber laser source at 1.56 lm-corrigendum". Chinese Optics Letters 12, nr 12 (2014): 123502. http://dx.doi.org/10.3788/col201412.123502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Hanwei Zhang, Hanwei Zhang, Hu Xiao Hu Xiao, Pu Zhou Pu Zhou, Xiaolin Wang Xiaolin Wang i Xiaojun Xu Xiaojun Xu. "High-power random distributed feedback Raman fiber laser operating at 1.2-μm". Chinese Optics Letters 12, s2 (2014): S21410–321412. http://dx.doi.org/10.3788/col201412.s21410.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Liu, Peng, Wanggen Sun, Xiao Sun, Zhen Zhu, Huabing Qin, Jian Su, Chengcheng Liu i in. "High–Power 792 nm Fiber–Coupled Semiconductor Laser". Photonics 10, nr 6 (26.05.2023): 619. http://dx.doi.org/10.3390/photonics10060619.

Pełny tekst źródła
Streszczenie:
The pumping of Tm-doped crystal or fiber by a 792 nm semiconductor laser is an important way to generate a mid-infrared laser, which is widely used in various fields. In this paper, a high–power 792 nm fiber–coupled semiconductor laser module was successfully fabricated with the output power of 232 W at a 10 A continuous current and the electro-optic conversion efficiency of 48.6%. The laser module is coupled with 24 chips into a fiber by spatial multiplexing and polarization combination technology. For a single emitting laser chip, the continuous wave (CW) output power and threshold current are 10.45 W at 10 A and 1.55 A, respectively. A polarization as high as 94% can also be realized, which is more suitable for laser spatial beam combining. The laser module was aged for more than 4000 h at 12 A and 25 °C without obvious power degradation.
Style APA, Harvard, Vancouver, ISO itp.
29

Valiunas, Jonas K., i Gautam Das. "Tunable Single-Longitudinal-Mode High-Power Fiber Laser". International Journal of Optics 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/475056.

Pełny tekst źródła
Streszczenie:
We report a novel CW tunable high-power single-longitudinal-mode fiber laser with a linewidth of∼9 MHz. A tunable fiber Bragg grating provided wavelength selection over a 10 nm range. An all-fiber Fabry-Perot filter was used to increase the longitudinal mode spacing of the laser cavity. An unpumped polarization-maintaining erbium-doped fiber was used inside the cavity to eliminate mode hopping and increase stability. A maximum output power of 300 mW was produced while maintaining single-longitudinal-mode operation.
Style APA, Harvard, Vancouver, ISO itp.
30

Nassiri, Ali, Hafida Idrissi-Saba i Abdelkader Boulezhar. "Analysis and Design of Coherent Combining of two Q-Switched Fiber Laser in Mach-Zehnder Type Cavity". Journal of Optical Communications 40, nr 4 (25.10.2019): 393–400. http://dx.doi.org/10.1515/joc-2017-0110.

Pełny tekst źródła
Streszczenie:
Abstract In this work, we have developed an analytical model of an actively Q-switched Ytterbium-doped fiber laser by using two coupled cavities with amplifying fibers in Mach–Zehnder interferometer configuration. This oscillator system provides high peak power and high energy nanosecond pulse. The pulse energy is almost twice the energy of an individual fiber laser with a combining efficiency goes up 99%. This concept brings some novel perspectives for scaling the high energy and high peak power of nanosecond pulse fiber laser.
Style APA, Harvard, Vancouver, ISO itp.
31

Lin Huaiqin, 林怀钦, 郭春雨 Guo Chunyu, 阮双琛 Ruan Shuangchen, 欧阳德钦 Ouyang Deqin, 杨锦辉 Yang Jinhui i 伍一鸣 Wu Yiming. "High-Power All-Fiber Yb-Doped Picosecond Fiber Laser". Chinese Journal of Lasers 40, nr 7 (2013): 0702013. http://dx.doi.org/10.3788/cjl201340.0702013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Wang, Xiaolei, Xinqiang Ma, Yuan Ren, Jingwen Wang i Wei Cheng. "Fiber Coupled High Power Nd:YAG Laser for Nondestructive Laser Cleaning". Photonics 10, nr 8 (3.08.2023): 901. http://dx.doi.org/10.3390/photonics10080901.

Pełny tekst źródła
Streszczenie:
In this study, a fiber coupled high power side-pumped Nd:YAG laser system for laser cleaning is presented. Based on the two-rod structure and two stages amplifiers, the maximum average output power of 783 W with corresponding pulse energy of 52 mJ at 15 kHz has been achieved. The fiber coupling efficiencies after the master oscillator, one stage amplifier and two stages amplifiers reach to 99%, 98.3% and 94%, respectively. A laser cleaning machine prototype composed of the master oscillator and one stage amplifier with an average output power of greater than 500 W has been developed and achieved better nondestructive cleaning effect for thermal control coating removal compared with commercial fiber laser cleaning machines. This study provides a new method for developing high power laser sources for nondestructive laser cleaning equipment.
Style APA, Harvard, Vancouver, ISO itp.
33

Niu, Jing Xia, Dong Mei Fei, Jing Li, Wei Zhao i Jian Yu Gao. "Spectral Characteristic Analysis on Yb3+ Doping Double-Clad Photonic Crystal Fiber". Applied Mechanics and Materials 543-547 (marzec 2014): 3764–67. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.3764.

Pełny tekst źródła
Streszczenie:
The photonic crystal fiber was applied in high-power laser gain medium, because of its flexible and optical controllability and special structure, which can overcome the design flaws of common optical fibers effectively. This paper studied the Yb3+ doping double-clad photonic crystal fiber. Through the theoretical analysis and numerical simulation, it optimized the structure design, drew the high doping concentration and double-clad fiber samples, analyzed the absorption and fluorescence spectra of fiber core material, and tested the optical fiber spectrum features, which can improve the performance of high power fiber laser.
Style APA, Harvard, Vancouver, ISO itp.
34

Yuanyuan Fan, Yuanyuan Fan, Bing He Bing He, Jun Zhou Jun Zhou, Jituo Zheng Jituo Zheng, Shoujun Dai Shoujun Dai, Chun Zhao Chun Zhao, Yunrong Wei Yunrong Wei i Qihong Lou Qihong Lou. "Efficient heat transfer in high-power fiber lasers". Chinese Optics Letters 10, nr 11 (2012): 111401–4. http://dx.doi.org/10.3788/col201210.111401.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Fathi, Hossein, Mikko Närhi i Regina Gumenyuk. "Towards Ultimate High-Power Scaling: Coherent Beam Combining of Fiber Lasers". Photonics 8, nr 12 (10.12.2021): 566. http://dx.doi.org/10.3390/photonics8120566.

Pełny tekst źródła
Streszczenie:
Fiber laser technology has been demonstrated as a versatile and reliable approach to laser source manufacturing with a wide range of applicability in various fields ranging from science to industry. The power/energy scaling of single-fiber laser systems has faced several fundamental limitations. To overcome them and to boost the power/energy level even further, combining the output powers of multiple lasers has become the primary approach. Among various combining techniques, the coherent beam combining of fiber amplification channels is the most promising approach, instrumenting ultra-high-power/energy lasers with near-diffraction-limited beam quality. This paper provides a comprehensive review of the progress of coherent beam combining for both continuous-wave and ultrafast fiber lasers. The concept of coherent beam combining from basic notions to specific details of methods, requirements, and challenges is discussed, along with reporting some practical architectures for both continuous and ultrafast fiber lasers.
Style APA, Harvard, Vancouver, ISO itp.
36

Alkeskjold, Thomas T., Marko Laurila, Johannes Weirich, Mette M. Johansen, Christina B. Olausson, Ole Lumholt, Danny Noordegraaf, Martin D. Maack i Christian Jakobsen. "Photonic crystal fiber amplifiers for high power ultrafast fiber lasers". Nanophotonics 2, nr 5-6 (16.12.2013): 369–81. http://dx.doi.org/10.1515/nanoph-2013-0050.

Pełny tekst źródła
Streszczenie:
AbstractIn recent years, ultrafast laser systems using large-mode-area fiber amplifiers delivering several hundreds of watts of average power has attracted significant academic and industrial interest. These amplifiers can generate hundreds of kilowatts to megawatts of peak power using direct amplification and multi-gigawatts of peak power using pulse stretching techniques. These amplifiers are enabled by advancements in Photonic Crystal Fiber (PCF) design and manufacturing technology. In this paper, we will give a short overview of state-of-the-art PCF amplifiers and describe the performance in ultrafast ps laser systems.
Style APA, Harvard, Vancouver, ISO itp.
37

KANEDA, Keiji. "High Power Continuous Wave Fiber Laser Technologies". Journal of Smart Processing 6, nr 2 (2017): 61–63. http://dx.doi.org/10.7791/jspmee.6.61.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zhang Hong, 张红, 杨春平 Yang Chunping, 李伟 Li Wei, 董海燕 Dong Haiyan, 杨超 Yang Chao, 王琦 Wang Qi i 肖小果 Xiao Xiaoguo. "Characteristics of high-power all-fiber laser". High Power Laser and Particle Beams 24, nr 6 (2012): 1287–89. http://dx.doi.org/10.3788/hplpb20122406.1287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Lin Honghuan, 林宏奂, 王建军 Wang Jianjun, 邓颖 Deng Ying, 张锐 Zhang Rui, 许党朋 Xu Dangpeng, 朱娜 Zhu Na, 李晶 Li Jing i 黄志华 Huang Zhihua. "All Fiber High-Peak-Power Pulsed Laser". Chinese Journal of Lasers 38, nr 12 (2011): 1202002. http://dx.doi.org/10.3788/cjl201138.1202002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Xiao, Q., P. Yan, D. Li, J. Sun, X. Wang, Y. Huang i M. Gong. "Bidirectional pumped high power Raman fiber laser". Optics Express 24, nr 6 (18.03.2016): 6758. http://dx.doi.org/10.1364/oe.24.006758.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Zhang, Hanwei, Xueyuan Du, Pu Zhou, Xiaolin Wang i Xiaojun Xu. "Tapered fiber based high power random laser". Optics Express 24, nr 8 (15.04.2016): 9112. http://dx.doi.org/10.1364/oe.24.009112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Xiang Xiangjun, 向祥军, 李剑彬 Li Jianbin, 周丹丹 Zhou Dandan, 张帆 Zhang Fan, 康民强 Kang Minqiang, 邓颖 Deng Ying, 粟敬钦 Su Jingqin, 郑奎兴 Zheng Kuixing i 朱启华 Zhu Qihua. "High-Peak-Power Fiber Pulse Laser System". Chinese Journal of Lasers 45, nr 6 (2018): 0601002. http://dx.doi.org/10.3788/cjl201845.0601002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wan, Peng, Lih-Mei Yang i Jian Liu. "High power 2 µm femtosecond fiber laser". Optics Express 21, nr 18 (4.09.2013): 21374. http://dx.doi.org/10.1364/oe.21.021374.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Pajewski, Łukasz, Łukasz Sójka, Samir Lamrini, Trevor Benson, Angela Seddon i Sławomir Sujecki. "Experimental investigation of mid-infrared Er:ZBLAN fiber laser". Photonics Letters of Poland 12, nr 3 (30.09.2020): 73. http://dx.doi.org/10.4302/plp.v12i3.989.

Pełny tekst źródła
Streszczenie:
In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF ReferencesS. D. Jackson, "Towards high-power mid-infrared emission from a fibre laser", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, "Advances on Photonic Crystal Fiber Sensors and Applications", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, "Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, "High power, 100 W-class, thulium-doped all-fiber lasers", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallée, and M. Bernier, "Towards power scaling of 2.8 μm fiber lasers", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, "High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, "10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm", Opt. Lett. 44, 491 (2019). CrossRef L. Sójka, et al., "Experimental Investigation of Mid-Infrared Laser Action From Dy3+ Doped Fluorozirconate Fiber", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, "Erbium 3 /spl mu/m fiber lasers", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallée, and M. Bernier, "Endcapping of high-power 3 µm fiber lasers", Opt. Express 27, 20659 (2019). CrossRef C. A. Schäfer, "Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, "New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carrée, M. Bernier, and R. Vallée, "Room-temperature fiber laser at 3.92 μm", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, "Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., "Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er3+/Tm3+", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., "Sensitization of Ho3+ - doped fluoroindate glasses for near and mid-infrared emission", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, "Efficient energy transfer from Er3+ to Ho3+ and Dy3+ in ZBLAN glass", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, "Design of a Multi-Wavelength Fiber Laser Based on Tm:Er:Yb:Ho Co-Doped Germanate Glass", J Lightwave Technol 1 (2020). CrossRef K. Anders, A. Jusza, P. Komorowski, P. Andrejuk, and R. Piramidowicz, "Short wavelength up-converted emission studies in Er3+ and Yb3+ doped ZBLAN glasses", J. Lumin. 201, 427 (2018). CrossRef P. Komorowski ,K. Anders ,U. Zdulska,R. Piramidowicz R. "Erbium doped ZBLAN fiber laser operating in the visible - feasibility study", Photonics Lett Pol 9, 85 (2017). CrossRef J. Swiderski, M. Michalska, and P. Grzes, "Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier", Applied Physics B 124, 152 (2018). CrossRef V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, "30 W fluoride glass all-fiber laser at 2.94 μm", Opt. Lett. 40, 2882 (2015). CrossRef
Style APA, Harvard, Vancouver, ISO itp.
45

Liang, Xiaolin, Kai Jiao, Xiange Wang, Yuze Wang, Yuyang Wang, Shengchuang Bai, Rongping Wang, Zheming Zhao i Xunsi Wang. "Progresses of Mid-Infrared Glass Fiber for Laser Power Delivery". Photonics 11, nr 1 (26.12.2023): 19. http://dx.doi.org/10.3390/photonics11010019.

Pełny tekst źródła
Streszczenie:
High-power laser delivery in infrared optical fiber has received much attention due to the urgent needs in the fields of national defense security, biomedicine, advanced manufacturing, and so on. In recent decades, there has been extensive research aimed at enhancing the capabilities of infrared laser power delivery through the purification of infrared glass or the optimization of fiber structures. This article provides an overview of common passive mid-infrared (MIR) optical fibers with numerous glasses and fiber structures, as well as their characteristics in laser power delivery. This review also highlights potential research directions and analyzes the challenges of passive mid-infrared fibers in the current applications.
Style APA, Harvard, Vancouver, ISO itp.
46

Dai Shoujun, 代守军, 何兵 He Bing, 周军 Zhou Jun i 赵纯 Zhao Chun. "Cooling Technology of High-Power and High-Power Fiber Laser Amplifier". Chinese Journal of Lasers 40, nr 5 (2013): 0502003. http://dx.doi.org/10.3788/cjl201340.0502003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

H. Ahmad, H. Ahmad, A. A. Latif A. A. Latif, M. Z. Zulkifli M. Z. Zulkifli, N. A. Awang N. A. Awang i S. W. Harun S. W. Harun. "High power dual-wavelength tunable fiber laser in linear and ring cavity configurations". Chinese Optics Letters 10, nr 1 (2012): 010603–10606. http://dx.doi.org/10.3788/col201210.010603.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Chengzheng Guo, Chengzheng Guo, Deyuan Shen Deyuan Shen, Jingyu Long Jingyu Long i Fei Wang Fei Wang. "High-power and widely tunable Tm-doped fiber laser at 2 \mu m". Chinese Optics Letters 10, nr 9 (2012): 091406–91408. http://dx.doi.org/10.3788/col201210.091406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Wu, Jiadong, Chunxiang Zhang, Jun Liu, Ting Zhao, Weichao Yao, Pinghua Tang, Le Zhang i Hao Chen. "Over 19 W Single-Mode 1545 nm Er,Yb Codoped All-Fiber Laser". Advances in Condensed Matter Physics 2017 (2017): 1–5. http://dx.doi.org/10.1155/2017/7408565.

Pełny tekst źródła
Streszczenie:
We report a high-power cladding-pumped Er,Yb codoped all-fiber laser with truly single transverse mode output. The fiber laser is designed to operate at 1545 nm by the use of a pair of fiber Bragg gratings (FBGs) to lock and narrow the output spectrum, which can be very useful in generating the eye-safe ~1650 nm laser emission through the Stimulated Raman Scattering (SRS) in silica fibers that is of interest in many applications. Two pieces of standard single-mode fibers are inserted into the laser cavity and output port to guarantee the truly single-mode output as well as good compatibility with other standard fiber components. We have obtained a maximum output power of 19.2 W at 1544.68 nm with a FWHM spectral width of 0.08 nm, corresponding to an average overall slope efficiency of 31.9% with respect to the launched pump power. This is, to the best of our knowledge, the highest output power reported from simple all-fiber single-mode Er,Yb codoped laser oscillator architecture.
Style APA, Harvard, Vancouver, ISO itp.
50

Chen, Xiao Chuan, Ling Fei Ji, Yong Bao i Yi Jian Jiang. "High Quality Fiber Laser Cutting of Electronic Alumina Ceramics". Advanced Materials Research 154-155 (październik 2010): 917–22. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.917.

Pełny tekst źródła
Streszczenie:
In this paper, high quality cutting of 1 mm dense Al2O3 electronic ceramic processed by a fiber laser with spot diameter of 15 μm was reported. The narrow kerf with 30μm width was obtained with laser power of 100 W. 300 W is the laser power threshold of the kerf enlargement. Under higher laser power, the ceramics can be damage-free cut with higher cutting speed. Striation-free cutting could be achieved at 1000 W laser power with a cutting speed of 350 mm/s. The ratio of cutting speed to laser power for striation-free cutting was determined as 0.35. The black cutting surface was due to the mass tetragonal alumina induced by N2 as assist gas.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii