Gotowa bibliografia na temat „High Entropy Alloy Coatings”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „High Entropy Alloy Coatings”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "High Entropy Alloy Coatings"
Sharma, Ashutosh. "High Entropy Alloy Coatings and Technology". Coatings 11, nr 4 (24.03.2021): 372. http://dx.doi.org/10.3390/coatings11040372.
Pełny tekst źródłaYurov, V. M., S. A. Guchenko, V. I. Goncharenko i V. S. Oleshko. "High-entropy ZrTiCrNiCu coating". Journal of Physics: Conference Series 2064, nr 1 (1.11.2021): 012080. http://dx.doi.org/10.1088/1742-6596/2064/1/012080.
Pełny tekst źródłaCui, Kaixuan, i Yong Zhang. "High-Entropy Alloy Films". Coatings 13, nr 3 (17.03.2023): 635. http://dx.doi.org/10.3390/coatings13030635.
Pełny tekst źródłaCai, Zhao Bing, Xue Jia Pang, Xiu Fang Cui, Xin Wen, Zhe Liu, Mei Ling Dong, Yang Li i Guo Jin. "In Situ Laser Synthesis of High Entropy Alloy Coating on Ti-6Al-4V Alloy: Characterization of Microstructure and Properties". Materials Science Forum 898 (czerwiec 2017): 643–50. http://dx.doi.org/10.4028/www.scientific.net/msf.898.643.
Pełny tekst źródłaZhang, Hongling, Wenjuan Li, Huanhuan Xu, Liang Chen, Junshan Zeng, Zhibing Ding, Wenmin Guo i Bin Liu. "Microstructure and Corrosion Behavior of Laser Cladding FeCoNiCrBSi Based High-Entropy Alloy Coatings". Coatings 12, nr 5 (4.05.2022): 628. http://dx.doi.org/10.3390/coatings12050628.
Pełny tekst źródłaLin, Cheng, i Yonggang Yao. "Corrosion-Resistant Coating Based on High-Entropy Alloys". Metals 13, nr 2 (20.01.2023): 205. http://dx.doi.org/10.3390/met13020205.
Pełny tekst źródłaMa, Kai, Li Feng i Zhipeng Wang. "Microstructure and Properties of FeCrMnxAlCu High-Entropy Alloys and Coatings". Coatings 13, nr 8 (9.08.2023): 1401. http://dx.doi.org/10.3390/coatings13081401.
Pełny tekst źródłaSfikas, Athanasios K., Spyros Kamnis, Martin C. H. Tse, Katerina A. Christofidou, Sergio Gonzalez, Alexandros E. Karantzalis i Emmanuel Georgatis. "Microstructural Evaluation of Thermal-Sprayed CoCrFeMnNi0.8V High-Entropy Alloy Coatings". Coatings 13, nr 6 (28.05.2023): 1004. http://dx.doi.org/10.3390/coatings13061004.
Pełny tekst źródłaGuo, Jing, Chenghao Liu, Dexing Wang, Lingfeng Xu, Kaikai Song i Ming Gao. "Structure and Wear Resistance of TiC-Reinforced Al1.8CrCuFeNi2 High-Entropy Alloy Coating Using Laser Cladding". Materials 16, nr 9 (27.04.2023): 3422. http://dx.doi.org/10.3390/ma16093422.
Pełny tekst źródłaDou, D., X. C. Li, Z. Y. Zheng i J. C. Li. "Coatings of FeAlCoCuNiV high entropy alloy". Surface Engineering 32, nr 10 (2.03.2016): 766–70. http://dx.doi.org/10.1080/02670844.2016.1148380.
Pełny tekst źródłaRozprawy doktorskie na temat "High Entropy Alloy Coatings"
Aziz, Khan Naveed. "RF Magnetron Sputtered AlCoCrCu0.5FeNi High Entropy Alloy (HEA) and High Entropy Ceramic (HEC) Thin Films". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24615.
Pełny tekst źródłaLöbel, Martin, Thomas Lindner, Thomas Mehner i Thomas Lampke. "Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF". Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-230210.
Pełny tekst źródłaBelous, V. A., S. A. Firstov, V. F. Gorban, A. S. Kuprin, V. D. Ovcharenko, E. N. Reshetnyak, G. N. Tolmachova i M. G. Kholomeev. "Properties of Coatings Deposited from Filtered Vacuum Arc Plasma with HEA Cathode". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35323.
Pełny tekst źródłaSobol, O. V., A. A. Andreev i V. Gorban. "Structural-Strained State and Mechanical Characteristics of Single-Phase Vacuum-Arc Coatings of Multicomponent High Entropy System Ti-V-Zr-Nb-Hf and Nitrides Based On It". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34808.
Pełny tekst źródłaSteneteg, Jakob. "Corrosion Resistant Multi-Component Coatings for Hydrogen Fuel Cells". Thesis, Linköpings universitet, Tunnfilmsfysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174617.
Pełny tekst źródłaFunMat II
Тевосян, А. А. "Боридні покриття на основі високоентропійних сплавів". Master's thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/73025.
Pełny tekst źródłaЛяшко, В. О. "Карбідні покриття на основі високоентропійних сплавів". Master's thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/73026.
Pełny tekst źródłaHuser, Gautier. "Etude et sélection d’alliages à composition complexe sans cobalt à finalité tribologique". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST051.
Pełny tekst źródłaCurrently, attempts are made to develop hardfacing cobalt-free alloys for coating the contact areas of moving parts of nuclear installations. In fact, under neutron flux, cobalt 59 is activated into cobalt 60, a highly radioactive isotope. Consequently, the coating debris generated by friction are likely to contaminate parts of the installation. Existing cobalt-free hardfacing alloys, nickel or iron bases, do not exhibit tribological properties competing with those of stellite®, a commonly used hardfacing cobalt base alloy. HEA (High Entropy Alloy) and CCA (Complex Concentration Alloy) may be good candidates. Indeed, compare to conventional alloys, they show vast composition domain giving access to a large range of properties. After an initial selection of elements, the phases of selected alloys were calculated by CALPHAD software (CALculation of PHAse Diagram). The compositions favoring the presence of hard intermetallic phases beneficial to tribological behavior were selected. Then several alloys were fabricated using different processes. From microstructural and tribological characterizations, one composition has been selected as the best potential cobalt-free hardfacing alloy candidate. Coatings of this composition were then fabricated by DLD (Direct Laser Deposition) and HIP (Hot Isostatic Pressing). Their microstructure and tribological behavior were measured and compared to those of stellite ®
Сухонос, Я. В. "Мікроструктура та фізико-механічні властивості боридних багатокомпонентних покриттів". Master's thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/76755.
Pełny tekst źródłaKushnerov, O. I. "MD simulation of AlCoCuFeNi high-entropy alloy nanoparticle". Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/45791.
Pełny tekst źródłaKsiążki na temat "High Entropy Alloy Coatings"
Srivatsan, T. S., i Manoj Gupta. High Entropy Alloys: Innovations, Advances, and Applications. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaSrivatsan, T. S., i Manoj Gupta. High Entropy Alloys: Innovations, Advances, and Applications. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaSrivatsan, T. S., i Manoj Gupta. High Entropy Alloys: Innovations, Advances, and Applications. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaLiaw, Peter K., i Y. Y. Shang. Mechanical Behavior of High-Entropy Alloys: Key Topics in Materials Science and Engineering. ASM International, 2022. http://dx.doi.org/10.31399/asm.tb.mbheaktmse.9781627084185.
Pełny tekst źródłaHecht, Ulrike, Mark L. Weaver i Sheng Guo, red. Dual-phase Materials in the Medium and High Entropy Alloy Systems Al-Cr-Fe-Ni and Al-Co-Cr-Fe-Ni. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-225-0.
Pełny tekst źródłaCzęści książek na temat "High Entropy Alloy Coatings"
Aliyu, Ahmed, M. Y. Rekha i Chandan Srivastava. "Electrodeposition of High Entropy Alloy Coatings". W High Entropy Alloys, 313–28. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367374426-12.
Pełny tekst źródłaMwema, Fredrick Madaraka, Tien-Chien Jen i Lin Zhu. "High Entropy Alloy Thin Films". W Thin Film Coatings, 257–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202615-13.
Pełny tekst źródłaChen, Yujie, Paul Munroe, Zonghan Xie i Sam Zhang. "High-Entropy Alloy-Based Coatings". W Protective Thin Coatings Technology, 205–32. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003088349-6.
Pełny tekst źródłaYeh, Jien-Wei, Su-Jien Lin, Ming-Hung Tsai i Shou-Yi Chang. "High-Entropy Coatings". W High-Entropy Alloys, 469–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27013-5_14.
Pełny tekst źródłaKumar, Himanshu, S. G. K. Manikandan, M. Kamaraj i S. Shiva. "Effect of Laser Surface Melting on Atmospheric Plasma Sprayed High-Entropy Alloy Coatings". W Laser-based Technologies for Sustainable Manufacturing, 207–34. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003402398-9.
Pełny tekst źródłaMigranov, M. Sh, S. R. Shekhtman i A. S. Gusev. "Synthesizing Low-Wear Cathodic Coatings from Multi-component Alloys with a High-Entropy Effect". W Lecture Notes in Mechanical Engineering, 718–28. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38126-3_71.
Pełny tekst źródłaChen, Hsuan-Chu, i Jien-Wei Yeh. "High-Entropy Coatings". W High-Entropy Materials: Theory, Experiments, and Applications, 687–719. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77641-1_13.
Pełny tekst źródłaPogrebnjak, A. D., i A. A. Bagdasaryan. "Interstitial Alloy Structuring of High Entropy Alloys". W High Entropy Alloys, 71–94. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367374426-3.
Pełny tekst źródłaLi, Dong Yue, i Yong Zhang. "High Entropy Alloy Fibers Having High Tensile Strength and Ductility". W High Entropy Alloys, 689–702. Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367374426-23.
Pełny tekst źródłaLebyodkin, Mikhail A., Tatiana A. Lebedkina, Jamieson Brechtl i Peter K. Liaw. "Serrated Flow in Alloy Systems". W High-Entropy Materials: Theory, Experiments, and Applications, 523–644. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77641-1_11.
Pełny tekst źródłaStreszczenia konferencji na temat "High Entropy Alloy Coatings"
Kenyi, A., R. Bhaskaran Nair i A. McDonald. "Towards Highly Durable High Entropy Alloy (HEA) Coatings Using Flame Spraying". W ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0827.
Pełny tekst źródłaBhattacharya, R., O. N. Senkov, A. K. Rai, X. Ma i P. Ruggiero. "High Entropy Alloy Coatings for Application as Bond Coating for Thermal Barrier Coating Systems". W ITSC 2016, redaktorzy A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen i C. A. Widener. DVS Media GmbH, 2016. http://dx.doi.org/10.31399/asm.cp.itsc2016p0279.
Pełny tekst źródłaYin, Shuo, Rocco Lupoi, Wenya Li, Yaxin Xu, Bo Song, Xingchen Yan i Min Kuang. "Cold-Sprayed FeCoNiCrMn High-Entropy Alloy (HEA) Coating: Microstructure and Tribological Properties". W ITSC2019, redaktorzy F. Azarmi, K. Balani, H. Koivuluoto, Y. Lau, H. Li, K. Shinoda, F. Toma, J. Veilleux i C. Widener. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0045.
Pełny tekst źródłaLöbel, Martin, Thomas Lindner, Thomas Mehner, Lisa-Marie Rymer, Thomas Lampke, Stefan Björklund i Shrikant Joshi. "Microstructure and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Coatings Prepared by HVAF and HVOF". W ITSC2021, redaktorzy F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau i in. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0416.
Pełny tekst źródłaLöbel, M., T. Lindner, T. Lampke i C. Kohrt. "Development of Wear-Resistant High-Entropy Alloy Coatings Produced by Thermal Spray Technology". W ITSC2017, redaktorzy A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen i C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0200.
Pełny tekst źródłaShahbazi, H., H. Vakilifard, R. B. Nair, A. C. Liberati, C. Moreau i R. S. Lima. "High Entropy Alloy (HEA) Bond Coats for Thermal Barrier Coatings (TBCs)—A Review". W ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0659.
Pełny tekst źródłaCappelli, Giacomo, Shuo Yin i Rocco Lupoi. "Erosion Behaviour of Cold Sprayed Coatings Made of CrMnFeCoNi High-Entropy Alloy or Composite Powders Containing WC Hard Particles in a Pure Nickel Matrix". W ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0242.
Pełny tekst źródłaPal, S., R. Bhaskaran Nair i A. McDonald. "Influence of Microstructure on Hardness and Electric Resistivity of Flame-Sprayed High Entropy Alloy Coatings". W ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0534.
Pełny tekst źródłaGuo, Yanping, Suiyuan Chen, Zhaoqing Yuan i Tiantian Guo. "FeCoNiAlTiCrSi high entropy alloy coating prepared by laser cladding". W 5th International Conference on Information Engineering for Mechanics and Materials. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icimm-15.2015.113.
Pełny tekst źródłaMahaffey, Jacob, Andrew Vackel i Andrew Kustas. "Properties of Cold Sprayed and Controlled Atmospheric Plasma Sprayed High Entropy Alloy (CoCrFeMnNi) Coatings." W Proposed for presentation at the International Thermal Spray Conference and Exposition held May 24 - April 28, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1867792.
Pełny tekst źródłaRaporty organizacyjne na temat "High Entropy Alloy Coatings"
El Atwani, Osman, Enrique Martinez Saez, Nan Li, Jon Kevin Scott Baldwin, Stuart Andrew Maloy, Meimei Li, Duc Nguyen, Damian Sobieraj, Jan Wrobel i Arun Devaraj. High irradiation resistance of nanocrystalline W-based high entropy alloy. Office of Scientific and Technical Information (OSTI), październik 2019. http://dx.doi.org/10.2172/1573323.
Pełny tekst źródłaYang, Shizhong. An Integrated Study on a Novel High Temperature High Entropy Alloy. Office of Scientific and Technical Information (OSTI), grudzień 2016. http://dx.doi.org/10.2172/1430114.
Pełny tekst źródłaPandey, Anup. Adaptive machine-learned force field development for high entropy alloy studies. Office of Scientific and Technical Information (OSTI), maj 2022. http://dx.doi.org/10.2172/1868213.
Pełny tekst źródłaLuo, Jian. High-Entropy Ceramic Coatings: Transformative New Materials for Environmentally-Compatible Thin-Film Insulators against High-T Molten Salts. Office of Scientific and Technical Information (OSTI), listopad 2022. http://dx.doi.org/10.2172/1897087.
Pełny tekst źródłaRuschau. L51961 Coating Compatibility at Thermite Welds and Keyhole Excavations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2002. http://dx.doi.org/10.55274/r0010247.
Pełny tekst źródłaPatchett, B. M., i A. C. Bicknell. L51706 Higher-Strength SMAW Filler Metals. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 1993. http://dx.doi.org/10.55274/r0010418.
Pełny tekst źródłaPatil i Cerkovnik. PR-425-123722-R01 Internally Lined Steel Risers as an Alternative to CRAs. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), październik 2013. http://dx.doi.org/10.55274/r0010573.
Pełny tekst źródła