Gotowa bibliografia na temat „HigBA type II TA system”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „HigBA type II TA system”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "HigBA type II TA system"

1

Jadhav, Pankaj Vilas, Vikrant Kumar Sinha, Saurabh Chugh, Chaithanya Kotyada, Digvijay Bachhav, Ramandeep Singh, Ulli Rothweiler i Mahavir Singh. "2.09 Å Resolution structure of E. coli HigBA toxin–antitoxin complex reveals an ordered DNA-binding domain and intrinsic dynamics in antitoxin". Biochemical Journal 477, nr 20 (29.10.2020): 4001–19. http://dx.doi.org/10.1042/bcj20200363.

Pełny tekst źródła
Streszczenie:
The toxin–antitoxin (TA) systems are small operon systems that are involved in important physiological processes in bacteria such as stress response and persister cell formation. Escherichia coli HigBA complex belongs to the type II TA systems and consists of a protein toxin called HigB and a protein antitoxin called HigA. The toxin HigB is a ribosome-dependent endoribonuclease that cleaves the translating mRNAs at the ribosome A site. The antitoxin HigA directly binds the toxin HigB, rendering the HigBA complex catalytically inactive. The existing biochemical and structural studies had revealed that the HigBA complex forms a heterotetrameric assembly via dimerization of HigA antitoxin. Here, we report a high-resolution crystal structure of E. coli HigBA complex that revealed a well-ordered DNA binding domain in HigA antitoxin. Using SEC-MALS and ITC methods, we have determined the stoichiometry of complex formation between HigBA and a 33 bp DNA and report that HigBA complex as well as HigA homodimer bind to the palindromic DNA sequence with nano molar affinity. Using E. coli growth assays, we have probed the roles of key, putative active site residues in HigB. Spectroscopic methods (CD and NMR) and molecular dynamics simulations study revealed intrinsic dynamic in antitoxin in HigBA complex, which may explain the large conformational changes in HigA homodimer in free and HigBA complexes observed previously. We also report a truncated, heterodimeric form of HigBA complex that revealed possible cleavage sites in HigBA complex, which can have implications for its cellular functions.
Style APA, Harvard, Vancouver, ISO itp.
2

Norouzi, Masoumeh, Abbas Maleki, Elham Aboualigalehdari i Sobhan Ghafourian. "Type II toxin- antitoxin systems in clinical isolates of antibiotic resistant Acinetobacter baumannii". Genetika 54, nr 2 (2022): 625–32. http://dx.doi.org/10.2298/gensr2202625n.

Pełny tekst źródła
Streszczenie:
The over use of antibiotics to treat infections in humans and animals made a phenomenon of the antibiotic-resistant bacteria. While studies focused to find on new antibiotics but, identification of novel antibacterial targets in bacteria is very important. By Toxin antitoxin systems this hypothesis could be done, whereas by the activation of a toxin or inactivation of an antitoxin, the raised toxin kills the bacterium. These systems are attractive target for antimicrobial therapy. However, the most important step for potency of TA system, as an antibacterial target, is to identify a TA system that is prevalent in all resistant clinical isolates. So, the prevalence of different TA systems among clinical isolates of Acinetobacter baumannii in Emam khomeini hospital, Ilam, Iran was evaluated to determine which TA system is prevalent in all antibiotic resistant A. baumannii. So, one hundred A. baumannii clinical isolates were identified during one-year period in Emam khomeini hospital, Ilam, Iran. A. baumannii clinical isolates were isolated from hospitalized patients in ICU and burn patients. All isolates were resistant to at least one antibiotic. Then, the isolates were subjected to evaluation to find mazEF and higBA TA genes by PCR. The results showed the frequency of mazEF and highBA TA genes in all isolates was 72% and 39%, respectively. mazEF or higBA TA systems are not presented in all isolates. So, the potency of these two TA systems are in challenged. Also, all isolates were not positive for one TA gene. So, more research in different geographical area should be done with functionality of TA genes.
Style APA, Harvard, Vancouver, ISO itp.
3

Park, Jin-Young, Hyo Jung Kim, Chinar Pathak, Hye-Jin Yoon, Do-Hee Kim, Sung Jean Park i Bong-Jin Lee. "Induced DNA bending by unique dimerization of HigA antitoxin". IUCrJ 7, nr 4 (26.06.2020): 748–60. http://dx.doi.org/10.1107/s2052252520006466.

Pełny tekst źródła
Streszczenie:
The bacterial toxin–antitoxin (TA) system regulates cell growth under various environmental stresses. Mycobacterium tuberculosis, the causative pathogen of tuberculosis (TB), has three HigBA type II TA systems with reverse gene organization, consisting of the toxin protein HigB and labile antitoxin protein HigA. Most type II TA modules are transcriptionally autoregulated by the antitoxin itself. In this report, we first present the crystal structure of the M. tuberculosis HigA3 antitoxin (MtHigA3) and MtHigA3 bound to its operator DNA complex. We also investigated the interaction between MtHigA3 and DNA using NMR spectroscopy. The MtHigA3 antitoxin structure is a homodimer that contains a structurally well conserved DNA-binding domain at the N-terminus and a dimerization domain at the C-terminus. Upon comparing the HigA homologue structures, a distinct difference was found in the C-terminal region that possesses the β-lid, and diverse orientations of two helix–turn–helix (HTH) motifs from HigA homologue dimers were observed. The structure of MtHigA3 bound to DNA reveals that the promoter DNA is bound to two HTH motifs of the MtHigA3 dimer presenting 46.5° bending, and the distance between the two HTH motifs of each MtHigA3 monomer was increased in MtHigA3 bound to DNA. The β-lid, which is found only in the tertiary structure of MtHigA3 among the HigA homologues, causes the formation of a tight dimerization network and leads to a unique arrangement for dimer formation that is related to the curvature of the bound DNA. This work could contribute to the understanding of the HigBA system of M. tuberculosis at the atomic level and may contribute to the development of new antibiotics for TB treatment.
Style APA, Harvard, Vancouver, ISO itp.
4

Klimkaitė, Laurita, Julija Armalytė, Jūratė Skerniškytė i Edita Sužiedėlienė. "The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas maltophilia of Environmental and Clinical Origin". Toxins 12, nr 10 (1.10.2020): 635. http://dx.doi.org/10.3390/toxins12100635.

Pełny tekst źródła
Streszczenie:
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has recently emerged as a multidrug-resistant opportunistic pathogen causing bloodstream, respiratory, and urinary tract infections. The connection between the commensal environmental S. maltophilia and the opportunistic pathogen strains is still under investigation. Bacterial toxin–antitoxin (TA) systems have been previously associated with pathogenic traits, such as biofilm formation and resistance to antibiotics, which are important in clinical settings. The same species of the bacterium can possess various sets of TAs, possibly influencing their overall stress response. While the TA systems of other important opportunistic pathogens have been researched, nothing is known about the TA systems of S. maltophilia. Here, we report the identification and characterization of S. maltophilia type II TA systems and their prevalence in the isolates of clinical and environmental origins. We found 49 putative TA systems by bioinformatic analysis in S. maltophilia genomes. Despite their even spread in sequenced S. maltophilia genomes, we observed that relBE, hicAB, and previously undescribed COG3832-ArsR operons were present solely in clinical S. maltophilia isolates collected in Lithuania, while hipBA was more frequent in the environmental ones. The kill-rescue experiments in Escherichia coli proved higBA, hicAB, and relBE systems to be functional TA modules. Together with different TA profiles, the clinical S. maltophilia isolates exhibited stronger biofilm formation, increased antibiotic, and serum resistance compared to environmental isolates. Such tendencies suggest that certain TA systems could be used as indicators of virulence traits.
Style APA, Harvard, Vancouver, ISO itp.
5

Habib, Gul, Qing Zhu i Baolin Sun. "Bioinformatics and Functional Assessment of Toxin-Antitoxin Systems in Staphylococcus aureus". Toxins 10, nr 11 (14.11.2018): 473. http://dx.doi.org/10.3390/toxins10110473.

Pełny tekst źródła
Streszczenie:
Staphylococcus aureus is a nosocomial pathogen that can cause chronic to persistent infections. Among different mediators of pathogenesis, toxin-antitoxin (TA) systems are emerging as the most prominent. These systems are frequently studied in Escherichia coli and Mycobacterial species but rarely explored in S. aureus. In the present study, we thoroughly analyzed the S. aureus genome and screened all possible TA systems using the Rasta bacteria and toxin-antitoxin database. We further searched E. coli and Mycobacterial TA homologs and selected 67 TA loci as putative TA systems in S. aureus. The host inhibition of growth (HigBA) TA family was predominantly detected in S. aureus. In addition, we detected seven pathogenicity islands in the S. aureus genome that are enriched with virulence genes and contain 26 out of 67 TA systems. We ectopically expressed multiple TA genes in E. coli and S. aureus that exhibited bacteriostatic and bactericidal effects on cell growth. The type I Fst toxin created holes in the cell wall while the TxpA toxin reduced cell size and induced cell wall septation. Besides, we identified a new TA system whose antitoxin functions as a transcriptional autoregulator while the toxin functions as an inhibitor of autoregulation. Altogether, this study provides a plethora of new as well as previously known TA systems that will revitalize the research on S. aureus TA systems.
Style APA, Harvard, Vancouver, ISO itp.
6

Fivian-Hughes, Amanda S., i Elaine O. Davis. "Analyzing the Regulatory Role of the HigA Antitoxin within Mycobacterium tuberculosis". Journal of Bacteriology 192, nr 17 (28.06.2010): 4348–56. http://dx.doi.org/10.1128/jb.00454-10.

Pełny tekst źródła
Streszczenie:
ABSTRACT Bacterial chromosomally encoded type II toxin-antitoxin (TA) loci may be involved in survival upon exposure to stress and have been linked to persistence and dormancy. Therefore, understanding the role of the numerous predicted TA loci within the human pathogen Mycobacterium tuberculosis has become a topic of great interest. Antitoxin proteins are known to autoregulate TA expression under normal growth conditions, but it is unknown whether they have a more global role in transcriptional regulation. This study focuses on analyzing the regulatory role of the M. tuberculosis HigA antitoxin. We first show that the M. tuberculosis higBA locus is functional within its native organism, as higB, higA, and Rv1957 were successfully deleted from the genome together while the deletion of higA alone was not possible. The effects of higB-Rv1957 deletion on M. tuberculosis global gene expression were investigated, and a number of potential HigA-regulated genes were identified. Transcriptional fusion and protein-DNA-binding assays were utilized to confirm the direct role of HigA in Rv1954A-Rv1957 repression, and the M. tuberculosis HigA DNA-binding motif was defined as ATATAGG(N6)CCTATAT. As HigA failed to bind to the next-most-closely related motif within the M. tuberculosis genome, HigA may not directly regulate any other genes in addition to its own operon.
Style APA, Harvard, Vancouver, ISO itp.
7

Kamruzzaman, Muhammad, Alma Y. Wu i Jonathan R. Iredell. "Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria". Microorganisms 9, nr 6 (11.06.2021): 1276. http://dx.doi.org/10.3390/microorganisms9061276.

Pełny tekst źródła
Streszczenie:
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Style APA, Harvard, Vancouver, ISO itp.
8

Levante, Alessia, Camilla Lazzi, Giannis Vatsellas, Dimitris Chatzopoulos, Vasilis S. Dionellis, Periklis Makrythanasis, Erasmo Neviani i Claudia Folli. "Genome Sequencing of five Lacticaseibacillus Strains and Analysis of Type I and II Toxin-Antitoxin System Distribution". Microorganisms 9, nr 3 (21.03.2021): 648. http://dx.doi.org/10.3390/microorganisms9030648.

Pełny tekst źródła
Streszczenie:
The analysis of bacterial genomes is a potent tool to investigate the distribution of specific traits related to the ability of surviving in particular environments. Among the traits associated with the adaptation to hostile conditions, toxin–antitoxin (TA) systems have recently gained attention in lactic acid bacteria. In this work, genome sequences of Lacticaseibacillus strains of dairy origin were compared, focusing on the distribution of type I TA systems homologous to Lpt/RNAII and of the most common type II TA systems. A high number of TA systems have been identified spread in all the analyzed strains, with type I TA systems mainly located on plasmid DNA. The type II TA systems identified in these strains highlight the diversity of encoded toxins and antitoxins and their organization. This study opens future perspectives on the use of genomic data as a resource for the study of TA systems distribution and prevalence in microorganisms of industrial relevance.
Style APA, Harvard, Vancouver, ISO itp.
9

Kang, Sung-Min, Do-Hee Kim, Chenglong Jin i Bong-Jin Lee. "A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability". Toxins 10, nr 12 (4.12.2018): 515. http://dx.doi.org/10.3390/toxins10120515.

Pełny tekst źródła
Streszczenie:
Toxin-antitoxin (TA) systems are known to play various roles in physiological processes, such as gene regulation, growth arrest and survival, in bacteria exposed to environmental stress. Type II TA systems comprise natural complexes consisting of protein toxins and antitoxins. Each toxin and antitoxin participates in distinct regulatory mechanisms depending on the type of TA system. Recently, peptides designed by mimicking the interfaces between TA complexes showed its potential to activate the activity of toxin by competing its binding counterparts. Type II TA systems occur more often in pathogenic bacteria than in their nonpathogenic kin. Therefore, they can be possible drug targets, because of their high abundance in some pathogenic bacteria, such as Mycobacterium tuberculosis. In addition, recent bioinformatic analyses have shown that type III TA systems are highly abundant in the intestinal microbiota, and recent clinical studies have shown that the intestinal microbiota is linked to inflammatory diseases, obesity and even several types of cancer. We therefore focused on exploring the putative relationship between intestinal microbiota-related human diseases and type III TA systems. In this paper, we review and discuss the development of possible druggable materials based on the mechanism of type II and type III TA system.
Style APA, Harvard, Vancouver, ISO itp.
10

Valizadeh, Nasrin, Firuzeh Valian, Nourkhoda Sadeghifard, Shahriar Karami, Iraj Pakzad, Hossein Kazemian i Sobhan Ghafourian. "The Role of Peganum harmala Ethanolic Extract and Type II Toxin Antitoxin System in Biofilm Formation". Drug Research 67, nr 07 (20.03.2017): 385–87. http://dx.doi.org/10.1055/s-0043-102060.

Pełny tekst źródła
Streszczenie:
AbstractToxin antitoxin system is a regulatory system that antitoxin inhibits the toxin. We aimed to determine the role of TA loci in biofilm formation in K. pneumoniae clinical and environmental isolates; also inhibition of biofilm formation by Peganum harmala. So, 40 K. pneumoniae clinical and environmental isolates were subjected for PCR to determine the frequency of mazEF, relEB, and mqsRA TA loci. Biofilm formation assay subjected for all isolates. Then, P. harmala was tested against positive biofilm formation strains. Our results demonstrated that relBE TA loci were dominant TA loci; whereas mqsRA TA loci were negative in all isolates. The most environmental isolates showed weak and no biofilm formation while strong and moderate biofilm formation observed in clinical isolates. Biofilm formations by K. pneumoniae in 9 ug/ml concentration were inhibited by P. harmala. In vivo study suggested to be performed to introduce Peganum harmala as anti-biofilm formation in K. pneumoniae.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "HigBA type II TA system"

1

Jadhav, Pankaj Vilas. "Structural insights into assembly and regulation of HigBA toxin-antitoxin system from Escherichia coli". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5902.

Pełny tekst źródła
Streszczenie:
In the last few decades, bacterial Toxin-antitoxin (TA) systems have been identified to play crucial roles in bacterial survival under stressful conditions and virulence. TA systems are pair of genetic elements where one of the genes codes for a protein (toxin), which is toxic to the host cell, and the other gene code for its antidote (antitoxin), which can be an RNA or a protein. Under favourable growth conditions, the antitoxin inhibits the toxin activity; however, when the bacterial cell encounters stressful conditions such as antibiotic exposure, starvation, phage infection, etc., the toxin is released from antitoxin inhibition resulting in cell growth arrest or cell death. The TA systems have been mainly implicated in plasmid maintenance, inhibition of bacteriophage propagation (abortive infection), and survival against antibiotic exposure (persister cell formation). The current thesis work is focused on understanding the structural basis of toxin inhibition and autoregulation of operon expression in the HigBA type II TA system from E. coli. This study reports a high-resolution 2.09 Å crystal structure of the HigBA complex from E. coli K-12. This structure reveals the overall organization and mechanism of antitoxin HigA binding to toxin HigB. We also report a 2.3 Å resolution crystal structure of a truncated heterodimeric HigBA complex. This structure signifies the role of helices 𝛼1 and 𝛼2 in the dimerization of HigA. Also, we propose that the dimeric structure may indicate the possible proteolytic cleavage sites in toxin HigB and antitoxin HigA, which may have implications in HigBA complex disassembly and regulation in bacteria under proteolytic stress. Further using CD spectroscopy, NMR spectroscopy, and MD simulation studies, we suggest that E. coli HigA antitoxin is well-folded and stable in solution; however, it shows an intrinsic dynamic behavior. Using EMSA, SEC-MALS, and ITC experiments we establish that HigBA binds to its 33bp promoter DNA (Pal-1 DNA) in a 2:1 (HigA: Pal-1) ratio, and through ITC experiments we report that both the HigBA complex and HigA have comparable high binding affinity towards 33bp Pal-1 DNA. Therefore, we suggest that the toxin HigB has little or no effect on the antitoxin’s DNA binding activity. Further, the C-terminal DBD of HigA (HigA_DBD) was cloned and purified for the NMR-based titration experiments to identify the DNA binding residues. The sequential backbone assignments of HigA_DBD were achieved and using NMR CSP data from the titration experiments with different Pal-1 DNA sequences, we reveal that residues from helix 𝛼7, 𝛼8, loop L1 and loop L2 of the DNA binding domain of HigA interact with Pal-1 promoter DNA sequence. Further, we report the NMR CSP data-driven HADDOCK model of Pal-1 DNA bound HigBA complex. Finally, we report a low-resolution cryoEM structure of the HigBA and 27bp Pal-1 DNA complexes, confirming that two HigBA complexes bind the Pal-1 DNA sequence.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii