Gotowa bibliografia na temat „Hierarchical Bayesian Priors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hierarchical Bayesian Priors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hierarchical Bayesian Priors"
Song, Chengyuan, Dongchu Sun, Kun Fan i Rongji Mu. "Posterior Propriety of an Objective Prior in a 4-Level Normal Hierarchical Model". Mathematical Problems in Engineering 2020 (14.02.2020): 1–10. http://dx.doi.org/10.1155/2020/8236934.
Pełny tekst źródłaJiao, Yan, Christopher Hayes i Enric Cortés. "Hierarchical Bayesian approach for population dynamics modelling of fish complexes without species-specific data". ICES Journal of Marine Science 66, nr 2 (26.09.2008): 367–77. http://dx.doi.org/10.1093/icesjms/fsn162.
Pełny tekst źródłaZhang, Hai, Puyu Wang, Qing Dong i Pu Wang. "Sparse Bayesian linear regression using generalized normal priors". International Journal of Wavelets, Multiresolution and Information Processing 15, nr 03 (16.02.2017): 1750021. http://dx.doi.org/10.1142/s0219691317500217.
Pełny tekst źródłaChan, Joshua C. C. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs". International Journal of Forecasting 37, nr 3 (lipiec 2021): 1212–26. http://dx.doi.org/10.1016/j.ijforecast.2021.01.002.
Pełny tekst źródłaScarpa, Bruno, i David B. Dunson. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors". Biometrics 65, nr 3 (23.01.2009): 772–80. http://dx.doi.org/10.1111/j.1541-0420.2008.01163.x.
Pełny tekst źródłaGu, Xiaojing, Henry Leung i Xingsheng Gu. "Bayesian Sparse Estimation Using Double Lomax Priors". Mathematical Problems in Engineering 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/176249.
Pełny tekst źródłaLiang, Xinya, Akihito Kamata i Ji Li. "Hierarchical Bayes Approach to Estimate the Treatment Effect for Randomized Controlled Trials". Educational and Psychological Measurement 80, nr 6 (16.03.2020): 1090–114. http://dx.doi.org/10.1177/0013164420909885.
Pełny tekst źródłaNam, Hyun Woo. "Modeling hyper-priors for Bayesian IRT equating: Fixed hyper-parameters or Hierarchical hyper-priors". Korean Society for Educational Evaluation 32, nr 4 (30.12.2019): 777–95. http://dx.doi.org/10.31158/jeev.2019.32.4.777.
Pełny tekst źródłaWang, Mengxi, Qingwang Liu, Liyong Fu, Guangxing Wang i Xiongqing Zhang. "Airborne LIDAR-Derived Aboveground Biomass Estimates Using a Hierarchical Bayesian Approach". Remote Sensing 11, nr 9 (3.05.2019): 1050. http://dx.doi.org/10.3390/rs11091050.
Pełny tekst źródłaKrishnan, Ranganath, Mahesh Subedar i Omesh Tickoo. "Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 4477–84. http://dx.doi.org/10.1609/aaai.v34i04.5875.
Pełny tekst źródłaRozprawy doktorskie na temat "Hierarchical Bayesian Priors"
Israeli, Yeshayahu D. "Whitney Element Based Priors for Hierarchical Bayesian Models". Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1621866603265673.
Pełny tekst źródłaGeorge, Robert Emerson. "The role of hierarchical priors in robust Bayesian inference /". The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847761308082.
Pełny tekst źródłaSonksen, Michael David. "Bayesian Model Diagnostics and Reference Priors for Constrained Rate Models of Count Data". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1312909127.
Pełny tekst źródłaPfarrhofer, Michael, i Philipp Piribauer. "Flexible shrinkage in high-dimensional Bayesian spatial autoregressive models". Elsevier, 2019. http://epub.wu.ac.at/6839/1/1805.10822.pdf.
Pełny tekst źródłaBitto, Angela, i Sylvia Frühwirth-Schnatter. "Achieving shrinkage in a time-varying parameter model framework". Elsevier, 2019. http://dx.doi.org/10.1016/j.jeconom.2018.11.006.
Pełny tekst źródłaFeldkircher, Martin, Florian Huber i Gregor Kastner. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian VARs?" WU Vienna University of Economics and Business, 2018. http://epub.wu.ac.at/6021/1/wp260.pdf.
Pełny tekst źródłaSeries: Department of Economics Working Paper Series
Pirathiban, Ramethaa. "Improving species distribution modelling: Selecting absences and eliciting variable usefulness for input into standard algorithms or a Bayesian hierarchical meta-factor model". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134401/1/Ramethaa_Pirathiban_Thesis.pdf.
Pełny tekst źródłaManandhar, Binod. "Bayesian Models for the Analyzes of Noisy Responses From Small Areas: An Application to Poverty Estimation". Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/188.
Pełny tekst źródłaEgidi, Leonardo. "Developments in Bayesian Hierarchical Models and Prior Specification with Application to Analysis of Soccer Data". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427270.
Pełny tekst źródłaNegli ultimi anni la sfida per la specificazione di nuove distribuzioni a priori e per l’uso di complessi modelli gerarchici è diventata ancora più rilevante all’interno dell’inferenza Bayesiana. L’avvento delle tecniche Markov Chain Monte Carlo, insieme a nuovi linguaggi di programmazione probabilistici, ha esteso i confini del campo, sia in direzione teorica che applicata. Nella presente tesi ci dedichiamo a obiettivi teorici e applicati. Nella prima parte proponiamo una nuova classe di distribuzioni a priori che dipendono dai dati e che sono specificate tramite una mistura tra una a priori non informativa e una a priori informativa. La generica distribuzione appartenente a questa nuova classe fornisce meno informazione di una priori informativa e si candida a non dominare le conclusioni inferenziali quando la dimensione campionaria è piccola o moderata. Tale distribuzione `e idonea per scopi di robustezza, specialmente in caso di scorretta specificazione della distribuzione a priori informativa. Alcuni studi di simulazione all’interno di modelli coniugati mostrano che questa proposta può essere conveniente per ridurre gli errori quadratici medi e per migliorare la copertura frequentista. Inoltre, sotto condizioni non restrittive, questa classe di distribuzioni d`a luogo ad alcune altre interessanti proprietà teoriche. Nella seconda parte della tesi usiamo la classe dei modelli gerarchici Bayesiani per prevedere alcune grandezze relative al gioco del calcio ed estendiamo l’usuale modellazione per i goal includendo nel modello un’ulteriore informazione proveniente dalle case di scommesse. Strumenti per sondare a posteriori la bontà di adattamento del modello ai dati mettono in luce un’ottima aderenza del modello ai dati in possesso, una buona calibrazione dello stesso e suggeriscono, infine, la costruzione di efficienti strategie di scommesse per dati futuri.
Frühwirth-Schnatter, Sylvia, i Regina Tüchler. "Bayesian parsimonious covariance estimation for hierarchical linear mixed models". Institut für Statistik und Mathematik, WU Vienna University of Economics and Business, 2004. http://epub.wu.ac.at/774/1/document.pdf.
Pełny tekst źródłaSeries: Research Report Series / Department of Statistics and Mathematics
Książki na temat "Hierarchical Bayesian Priors"
Bera, Anil K. Estimation of systematic risk using Bayesian analysis with hierarchical and non-normal priors. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois Urbana-Champaign, 1989.
Znajdź pełny tekst źródłaKruschke, John K., i Wolf Vanpaemel. Bayesian Estimation in Hierarchical Models. Redaktorzy Jerome R. Busemeyer, Zheng Wang, James T. Townsend i Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.13.
Pełny tekst źródłaButz, Martin V., i Esther F. Kutter. Top-Down Predictions Determine Perceptions. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0009.
Pełny tekst źródłaCzęści książek na temat "Hierarchical Bayesian Priors"
Wang, Jian, i Miaomiao Zhang. "Bayesian Atlas Building with Hierarchical Priors for Subject-Specific Regularization". W Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 76–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87202-1_8.
Pełny tekst źródłaAoki, Kohta, i Hiroshi Nagahashi. "Bayesian Image Segmentation Using MRF’s Combined with Hierarchical Prior Models". W Image Analysis, 65–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499145_8.
Pełny tekst źródłaMohammad-Djafari, Ali. "Variational Bayesian Approximation for Linear Inverse Problems with a Hierarchical Prior Models". W Lecture Notes in Computer Science, 669–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40020-9_74.
Pełny tekst źródłaCongdon, Peter D. "Time Structured Priors". W Bayesian Hierarchical Models, 165–211. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429113352-5.
Pełny tekst źródłaCongdon, Peter D. "Regression Techniques Using Hierarchical Priors". W Bayesian Hierarchical Models, 253–315. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429113352-7.
Pełny tekst źródła"Regression Techniques Using Hierarchical Priors". W Applied Bayesian Hierarchical Methods, 207–55. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584887218-c5.
Pełny tekst źródłaCongdon, Peter D. "Factor Analysis, Structural Equation Models, and Multivariate Priors". W Bayesian Hierarchical Models, 339–403. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429113352-9.
Pełny tekst źródła"Structured Priors Recognizing Similarity over Time and Space". W Applied Bayesian Hierarchical Methods, 141–205. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584887218-c4.
Pełny tekst źródła"Multivariate Priors, with a Focus on Factor and Structural Equation Models". W Applied Bayesian Hierarchical Methods, 281–336. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584887218-c7.
Pełny tekst źródłaBloetscher, Frederick. "Applications of Hierarchical Bayesian Methods to Answer Multilayer Questions with Limited Data". W Bayesian Inference [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104784.
Pełny tekst źródłaStreszczenia konferencji na temat "Hierarchical Bayesian Priors"
Wang, Zhen, i Chao Lan. "Towards a Hierarchical Bayesian Model of Multi-View Anomaly Detection". W Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/335.
Pełny tekst źródłaStahlhut, Carsten, Hagai T. Attias, Kensuke Sekihara, David Wipf, Lars K. Hansen i Srikantan S. Nagarajan. "A hierarchical Bayesian M/EEG imagingmethod correcting for incomplete spatio-temporal priors". W 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556536.
Pełny tekst źródłaGiri, Ritwik, i Bhaskar D. Rao. "Hierarchical Bayesian formulation of Sparse Signal Recovery algorithms using scale mixture priors". W 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, 2015. http://dx.doi.org/10.1109/acssc.2015.7421083.
Pełny tekst źródłaLesouple, J., J. Y. Tourneret, M. Sahmoudi, F. Barbiero i F. Faurie. "Multipath Mitigation in Global Navigation Satellite Systems Using a Bayesian Hierarchical Model With Bernoulli Laplacian Priors". W 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2018. http://dx.doi.org/10.1109/ssp.2018.8450818.
Pełny tekst źródłaAbaei, Mohammad Mahdi, Nu Rhahida Arini, Philipp R. Thies i Johanning Lars. "Failure Estimation of Offshore Renewable Energy Devices Based on Hierarchical Bayesian Approach". W ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95099.
Pełny tekst źródłaLopez-Martinez, Daniel, Ke Peng, Arielle Lee, David Borsook i Rosalind Picard. "Pain Detection with fNIRS-Measured Brain Signals: A Personalized Machine Learning Approach Using the Wavelet Transform and Bayesian Hierarchical Modeling with Dirichlet Process Priors". W 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 2019. http://dx.doi.org/10.1109/aciiw.2019.8925076.
Pełny tekst źródłaLiu, Yuhang, Wenyong Dong, Lei Zhang, Dong Gong i Qinfeng Shi. "Variational Bayesian Dropout With a Hierarchical Prior". W 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00729.
Pełny tekst źródłaFeng, Wei, Qiaofeng Li i Qiuhai Lu. "A Hierarchical Bayesian Method for Time Domain Structure Damage Detection". W ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97026.
Pełny tekst źródłaWang, Li, Ali Mohammad-Djafari i Nicolas Gac. "Bayesian X-ray computed tomography using a three-level hierarchical prior model". W BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4985361.
Pełny tekst źródłaPedersen, Niels Lovmand, Carles Navarro Manchon, Dmitriy Shutin i Bernard Henri Fleury. "Application of Bayesian hierarchical prior modeling to sparse channel estimation". W ICC 2012 - 2012 IEEE International Conference on Communications. IEEE, 2012. http://dx.doi.org/10.1109/icc.2012.6363847.
Pełny tekst źródła