Gotowa bibliografia na temat „Heron tetrahedra”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Heron tetrahedra”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Heron tetrahedra"

1

Chisholm, C., i J. A. MacDougall. "Rational and Heron tetrahedra". Journal of Number Theory 121, nr 1 (listopad 2006): 153–85. http://dx.doi.org/10.1016/j.jnt.2006.02.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mazėtis, Edmundas, i Grigorijus Melničenko. "Rational cuboids and Heron triangles II". Lietuvos matematikos rinkinys 60 (5.12.2019): 34–38. http://dx.doi.org/10.15388/lmr.b.2019.15233.

Pełny tekst źródła
Streszczenie:
We study the connection of Heronian triangles with the problem of the existence of rational cuboids. It is proved that the existence of a rational cuboid is equivalent to the existence of a rectangular tetrahedron, which all sides are rational and the base is a Heronian triangle. Examples of rectangular tetrahedra are given, in which all sides are integer numbers, but the area of the base is irrational. The example of the rectangular tetrahedron is also given, which has lengths of one side irrational and the other integer, but the area of the base is integer.
Style APA, Harvard, Vancouver, ISO itp.
3

Lin, C. S. "95.66 The reciprocal volume of a Heron tetrahedron". Mathematical Gazette 95, nr 534 (listopad 2011): 542–45. http://dx.doi.org/10.1017/s0025557200003740.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chan, Kar-Weng. "Evaluation of Chan’s tetrahedron classification method and Karweng dissimilarity index using heroin impurity data". Egyptian Journal of Forensic Sciences 3, nr 3 (wrzesień 2013): 67–74. http://dx.doi.org/10.1016/j.ejfs.2013.04.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Heron tetrahedra"

1

Chisholm, Catherine Rachel. "Rational and Heron Tetrahedra". Thesis, 2004. http://hdl.handle.net/1959.13/24856.

Pełny tekst źródła
Streszczenie:
Rational tetrahedra are tetrahedra with rational edges. Heron tetrahedra are tetrahedra with integer edges, integer faces areas and integer volume --- the three-dimensional analogue of Heron triangles. Of course, if a rational tetrahedron has rational face areas and volume then it is easy to scale it up to get a Heron tetrahedron. So we also use `Heron tetrahedra' when we mean tetrahedra with rational edges, areas and volume. The work in this thesis is motivated by Buchholz's paper {\it Perfect Pyramids} [4]. Buchholz examined certain configurations of rational tetrahedra, looking first for tetrahedra with rational volume, and then for Heron tetrahedra. Buchholz left some of the cases he examined unsolved and Chapter 2 is largely devoted to the resolution of these. In Chapters 3 and 4 we expand upon some of Buchholz's results to find infinite families of Heron tetrahedra corresponding to rational points on certain elliptic curves. In Chapters 5 and 6 we blend the ideas of Buchholz in [4] and of Buchholz and MacDougall in [7], and consider rational tetrahedra with edges in arithmetic (AP) or geometric (GP) progression. It turns out that there are no Heron AP or GP tetrahedra, but AP tetrahedra can have rational volume. They can also have one rational face area, although only one AP tetrahedron has been found with a rational face area and rational volume. For GP tetrahedra there are still unsolved cases, but we show that if GP tetrahedra with rational volume exist, then there are only finitely many. The faces of a rational GP tetrahedron are never rational. Much of the work in these two chapters also appeared in the author's Honours thesis, but has been refined and extended here, and is included to give a more complete picture of the work on Heron tetrahedra which has been done to date. In the final chapter we use a different approach and concentrate on the face areas first, instead of the volume. To make it easier (hopefully) to find tetrahedra with all faces having rational area, we place restrictions on the types of faces and number of different faces the tetrahedra have.
Masters Thesis
Style APA, Harvard, Vancouver, ISO itp.
2

Chisholm, Catherine Rachel. "Rational and Heron Tetrahedra". 2004. http://hdl.handle.net/1959.13/24856.

Pełny tekst źródła
Streszczenie:
Rational tetrahedra are tetrahedra with rational edges. Heron tetrahedra are tetrahedra with integer edges, integer faces areas and integer volume --- the three-dimensional analogue of Heron triangles. Of course, if a rational tetrahedron has rational face areas and volume then it is easy to scale it up to get a Heron tetrahedron. So we also use `Heron tetrahedra' when we mean tetrahedra with rational edges, areas and volume. The work in this thesis is motivated by Buchholz's paper {\it Perfect Pyramids} [4]. Buchholz examined certain configurations of rational tetrahedra, looking first for tetrahedra with rational volume, and then for Heron tetrahedra. Buchholz left some of the cases he examined unsolved and Chapter 2 is largely devoted to the resolution of these. In Chapters 3 and 4 we expand upon some of Buchholz's results to find infinite families of Heron tetrahedra corresponding to rational points on certain elliptic curves. In Chapters 5 and 6 we blend the ideas of Buchholz in [4] and of Buchholz and MacDougall in [7], and consider rational tetrahedra with edges in arithmetic (AP) or geometric (GP) progression. It turns out that there are no Heron AP or GP tetrahedra, but AP tetrahedra can have rational volume. They can also have one rational face area, although only one AP tetrahedron has been found with a rational face area and rational volume. For GP tetrahedra there are still unsolved cases, but we show that if GP tetrahedra with rational volume exist, then there are only finitely many. The faces of a rational GP tetrahedron are never rational. Much of the work in these two chapters also appeared in the author's Honours thesis, but has been refined and extended here, and is included to give a more complete picture of the work on Heron tetrahedra which has been done to date. In the final chapter we use a different approach and concentrate on the face areas first, instead of the volume. To make it easier (hopefully) to find tetrahedra with all faces having rational area, we place restrictions on the types of faces and number of different faces the tetrahedra have.
Masters Thesis
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Heron tetrahedra"

1

Taber, Douglass F. "Reactions of Alkenes". W Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0029.

Pełny tekst źródła
Streszczenie:
The catalytic reduction of the alkene 1 gave the cis-fused product (not illustrated), by kinetic H₂ addition to the less congested face of the alkene. Ryan A. Shenvi of Scripps La Jolla found (J. Am. Chem. Soc. 2014, 136, 1300) conditions for stepwise HAT, con­verting 1 to the thermodynamically-favored trans-fused ketone 2. Seth B. Herzon of Yale University devised (J. Am. Chem. Soc. 2014, 136, 6884) a protocol for the reduc­tion, mediated by 4, of the double bond of a haloalkene 3 to give the saturated halide 5. The Shenvi conditions also reduced a haloalkene to the saturated halide. Daniel J. Weix of the University of Rochester and Patrick L. Holland, also of Yale University, established (J. Am. Chem. Soc. 2014, 136, 945) conditions for the kinetic isomerization of a terminal alkene 6 to the Z internal alkene 7. Christoforos G. Kokotos of the University of Athens showed (J. Org. Chem. 2014, 79, 4270) that the ketone 9, used catalytically, markedly accelerated the Payne epoxidation of 8 to 10. Note that Helena M. C. Ferraz of the Universidade of São Paulo reported (Tetrahedron Lett. 2000, 41, 5021) several years ago that alkene epoxidation was also easily carried out with DMDO generated in situ from acetone and oxone. Theodore A. Betley of Harvard University prepared (Chem. Sci. 2014, 5, 1526) the allylic amine 12 by reacting the alkene 11 with 1-azidoadamantane in the presence of an iron catalyst. Rodney A. Fernandes of the Indian Institute of Technology Bombay developed (J. Org. Chem. 2014, 79, 5787) efficient conditions for the Wacker oxida­tion of a terminal alkene 6 to the methyl ketone 13. Yong-Qiang Wang of Northwest University oxidized (Org. Lett. 2014, 16, 1610) the alkene 6 to the enone 14. Peili Teo of the National University of Singapore devised (Chem. Commun. 2014, 50, 2608) conditions for the Markovnikov hydration of the alkene 6 to the alcohol 15. Internal alkenes were inert under these conditions, but Yoshikazo Kitano of the Tokyo University of Agriculture and Technology effected (Synthesis 2014, 46, 1455) the Markovnikov amination (not illustrated) of more highly substituted alkenes.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii