Gotowa bibliografia na temat „Hermitian metric”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Hermitian metric”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Hermitian metric"
Kawamura, Masaya. "On Kähler-like and G-Kähler-like almost Hermitian manifolds". Complex Manifolds 7, nr 1 (3.04.2020): 145–61. http://dx.doi.org/10.1515/coma-2020-0009.
Pełny tekst źródłaFaran, V, James J. "Hermitian Finsler metrics and the Kobayashi metric". Journal of Differential Geometry 31, nr 3 (1990): 601–25. http://dx.doi.org/10.4310/jdg/1214444630.
Pełny tekst źródłaALDEA, NICOLETA, i GHEORGHE MUNTEANU. "NEW CANDIDATES FOR A HERMITIAN APPROACH OF GRAVITY". International Journal of Geometric Methods in Modern Physics 10, nr 09 (30.08.2013): 1350041. http://dx.doi.org/10.1142/s0219887813500412.
Pełny tekst źródłaTalmadge, Andrew. "Symmetry breaking via internal geometry". International Journal of Mathematics and Mathematical Sciences 2005, nr 13 (2005): 2023–30. http://dx.doi.org/10.1155/ijmms.2005.2023.
Pełny tekst źródłaZelewski, Piotr M. "On the Hermitian-Einstein Tensor of a Complex Homogenous Vector Bundle". Canadian Journal of Mathematics 45, nr 3 (1.06.1993): 662–72. http://dx.doi.org/10.4153/cjm-1993-037-5.
Pełny tekst źródłaLIU, KE-FENG, i XIAO-KUI YANG. "GEOMETRY OF HERMITIAN MANIFOLDS". International Journal of Mathematics 23, nr 06 (6.05.2012): 1250055. http://dx.doi.org/10.1142/s0129167x12500553.
Pełny tekst źródłaSalimov, Arif. "On anti-Hermitian metric connections". Comptes Rendus Mathematique 352, nr 9 (wrzesień 2014): 731–35. http://dx.doi.org/10.1016/j.crma.2014.07.004.
Pełny tekst źródłaMostafazadeh, Ali. "Pseudo-Hermitian quantum mechanics with unbounded metric operators". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, nr 1989 (28.04.2013): 20120050. http://dx.doi.org/10.1098/rsta.2012.0050.
Pełny tekst źródła,, Haripamyu, Jenizon , i I. Made Arnawa. "Metrik Finsler Pseudo-Konveks Kuat pada Bundel Vektor Holomorfik". Jurnal Matematika 7, nr 1 (10.06.2017): 12. http://dx.doi.org/10.24843/jmat.2017.v07.i01.p78.
Pełny tekst źródłaVERGARA-DIAZ, E., i C. M. WOOD. "HARMONIC CONTACT METRIC STRUCTURES AND SUBMERSIONS". International Journal of Mathematics 20, nr 02 (luty 2009): 209–25. http://dx.doi.org/10.1142/s0129167x09005224.
Pełny tekst źródłaRozprawy doktorskie na temat "Hermitian metric"
Musumbu, Dibwe Pierrot. "The metric for non-Hermitian Hamiltonians : a case study". Thesis, Stellenbosch : Stellenbosch University, 2006. http://hdl.handle.net/10019.1/17403.
Pełny tekst źródłaENGLISH ABSTRACT: We are studying a possible implementation of an appropriate framework for a proper non- Hermitian quantum theory. We present the case where for a non-Hermitian Hamiltonian with real eigenvalues, we define a new inner product on the Hilbert space with respect to which the non-Hermitian Hamiltonian is Quasi-Hermitian. The Quasi-hermiticity of the Hamiltonian introduces the bi-orthogonality between the left-hand eigenstates and the right-hand eigenstates, in which case the metric becomes a basis transformation. We use the non-Hermitian quadratic Hamiltonian to show that such a metric is not unique but can be uniquely defined by requiring to hermitize all elements of one of the irreducible sets defined on the set of all observables. We compare the constructed metric with specific known examples in the literature in which cases a unique choice is made.
AFRIKAANSE OPSOMMING: Ons ondersoek die implementering van n gepaste raamwerk virn nie-Hermitiese kwantumteorie. Ons beskoun nie-Hermitiese Hamilton-operator met reele eiewaardes en definieer in gepaste binneproduk ten opsigtewaarvan die operator kwasi-Hermitiese is. Die kwasi- Hermities aard van die Hamilton operator lei dan tot n stel bi-ortogonale toestande. Ons konstrueer n basistransformasie wat die linker en regter eietoestande van hierdie stel koppel. Hierdie transformasie word dan gebruik omn nuwe binneproduk op die Hilbert-ruimte te definieer. Die oorspronklike nie-HermitieseHamilton-operator is danHermitiesmet betrekking tot hierdie nuwe binneproduk. Ons gebruik die nie-Hermitiese kwadratieseHamilton-operator omte toon dat hierdie metriek nie uniek is nie, maar wel uniek bepaal kan word deur verder te vereis dat dit al die elemente van n onherleibare versameling operatoreHermitiseer. Ons vergelyk hierdie konstruksiemet die bekende voorbeelde in die literatuur en toon dat diemetriek in beide gevalle uniek bepaal kan word.
Barberis, Maria Laura, i barberis@mate uncor edu. "Homogeneous Hyper-Hermitian Metrics Which are Conformally". ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi925.ps.
Pełny tekst źródłaRoth, John Charles. "Perturbations of Kähler-Einstein metrics /". Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5737.
Pełny tekst źródłaSilva, Neiton Pereira da. "Metricas de Einstein e estruturas Hermitianas invariantes em variedades bandeira". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306785.
Pełny tekst źródłaTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-14T14:44:13Z (GMT). No. of bitstreams: 1 Silva_NeitonPereirada_D.pdf: 4231710 bytes, checksum: af4dc57e0a7215547662f87d1744bb27 (MD5) Previous issue date: 2009
Resumo: Neste trabalho encontramos todas as métricas de Einstein invariantes em quatro famílias de variedades bandeira do tipo B1 e C1. Os nossos resultados são consistentes com a conjectura de Wang e Ziller sobre a finitude das métricas de Einstein. O nosso método para resolver as equações de Einstein e baseado nas simetrias do sistema algébrico. Obtemos os sistemas algébricos de Einstein para variedades bandeira generalizadas do tipo B1 C1e G2. Estes sistemas são as condições necessárias e suficientes para métricas invariantes nessas variedades serem Einstein. Os sistemas algébricos que obtivemos generalizam as equações de Einstein obtidas por Sakane nos casos maximais. As equações nos casos Al e Dl foram obtidas por Arvanitoyeorgos. Calculamos o conjunto das trazes para as variedades bandeira generalizadas dos grupos de Lie clássicos. Assim estendemos à essas variedades certos resultados sobre estruturas Hermitianas invariantes obtidos por San Martin, Cohen e Negreiros.
Abstract: In this work we and all the invariant Einstein metrics on four families of ag manifolds of type Bl and Cl. Our results are consistent with the finiteness conjecture of Einstein metrics proposed by Wang and Ziller. Our approach for solving the Einstein equations is based on the symmetries of the algebraic system. We obtain the Einstein algebraic systems for the generalized ag manifolds of type Bl, Cl and G2. These systems are necessary and sufficient conditions for invariant metrics on these manifolds to be Einstein. The algebraic systems that we obtained generalize the Einstein equations obtained by Sakane in the maximal cases. The equations in the cases Al and Dl were obtained by Arvanitoyeorgos. We calculate all the t-roots on the generalized ag manifolds of the classical Lie groups. Thus we extend to these manifolds certain results on invariant structures Hermitian obtained by San Martin, Cohen and Negreiros.
Doutorado
Geometria Diferencial
Doutor em Matemática
Ben, Ahmed Ali. "Géométrie et dynamique des structures Hermite-Lorentz". Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0824.
Pełny tekst źródłaIn the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple
Tshikunguila, Tshikuna-Matamba. "The differential geometry of the fibres of an almost contract metric submersion". Thesis, 2013. http://hdl.handle.net/10500/18622.
Pełny tekst źródłaMathematical Sciences
D. Phil. (Mathematics)
Sun, Jian. "Kähler-Einstein metrics and Sobolev inequality /". 2000. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9965165.
Pełny tekst źródłaTong, Cheng Yu. "On the Kahler Ricci flow, positive curvature in Hermitian geometry and non-compact Calabi-Yau metrics". Thesis, 2021. https://doi.org/10.7916/d8-mcn0-2p05.
Pełny tekst źródła(9132815), Kuang-Ru Wu. "Hermitian-Yang-Mills Metrics on Hilbert Bundles and in the Space of Kahler Potentials". Thesis, 2020.
Znajdź pełny tekst źródłaStemmler, Matthias [Verfasser]. "Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds / vorgelegt von Matthias Stemmler". 2009. http://d-nb.info/1003965474/34.
Pełny tekst źródłaKsiążki na temat "Hermitian metric"
Metric rigidity theorems on Hermitian locally symmetric manifolds. Singapore: World Scientific, 1989.
Znajdź pełny tekst źródłaKähler-Einstein metrics and integral invariants. Berlin: Springer-Verlag, 1988.
Znajdź pełny tekst źródłaSiu, Yum-Tong. Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1.
Pełny tekst źródłaADS/CFT CORRESPONDENCE: Einstein metrics and their conformal boundaries. Zürich: EUROPEAN MATHEMATICAL SOCIETY, 2005.
Znajdź pełny tekst źródłaSiu, Yum-Tong. Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics: Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986. Basel: Birkhäuser Verlag, 1987.
Znajdź pełny tekst źródłaTong, Cheng Yu. On the Kahler Ricci flow, positive curvature in Hermitian geometry and non-compact Calabi-Yau metrics. [New York, N.Y.?]: [publisher not identified], 2021.
Znajdź pełny tekst źródła1950-, Mabuchi Toshiki, Mukai Shigeru 1953- i International Tanaguchi Symposium (27th : 1990 : Sanda-shi, Japan), red. Einstein metrics and Yang-Mills connections: Proceedings of the 27th Taniguchi international symposium. New York: M. Dekker, 1993.
Znajdź pełny tekst źródłaSiu, Yum-Tong. Lectures on Hermitian-Einstein Metric for Stable Bundles and Kahler-Einstein Metrics (DMV Seminar). Birkhauser Verlag AG, 1989.
Znajdź pełny tekst źródłaAdS/CFT correspondence: Einstein metrics and their conformal boundaries : 73rd meeting of theoretical physicists and mathematicians, Strasbourg, September 11-13, 2003. Zürich: European Mathematical Society, 2005.
Znajdź pełny tekst źródłaAds/Cft Correspondence: Einstein Metrics and Their Conformal Boundaries: 73rd Meeting of Theoretical Physicists and Mathematicians .. (IRMA Lectures in Mathematics & Theoretical Physics). A S M International, Incorporated, 2005.
Znajdź pełny tekst źródłaCzęści książek na temat "Hermitian metric"
Trombetti, Rocco, i Ferdinando Zullo. "Hermitian Rank-Metric Codes". W Trends in Mathematics, 423–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83823-2_66.
Pełny tekst źródłaCho, Yong Seung. "Gromov–Witten Invariants on the Products of Almost Contact Metric Manifolds". W Hermitian–Grassmannian Submanifolds, 165–73. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5556-0_14.
Pełny tekst źródłaCabanes, Yann, Frédéric Barbaresco, Marc Arnaudon i Jérémie Bigot. "Toeplitz Hermitian Positive Definite Matrix Machine Learning Based on Fisher Metric". W Lecture Notes in Computer Science, 261–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26980-7_27.
Pełny tekst źródłaDeza, Michel Marie, i Elena Deza. "Riemannian and Hermitian Metrics". W Encyclopedia of Distances, 133–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44342-2_7.
Pełny tekst źródłaDeza, Michel Marie, i Elena Deza. "Riemannian and Hermitian Metrics". W Encyclopedia of Distances, 125–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30958-8_7.
Pełny tekst źródłaDeza, Michel Marie, i Elena Deza. "Riemannian and Hermitian Metrics". W Encyclopedia of Distances, 135–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52844-0_7.
Pełny tekst źródłaDamailly, Jean-Pierre. "Singular hermitian metrics on positive line bundles". W Lecture Notes in Mathematics, 87–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0094512.
Pełny tekst źródłaSiu, Yum-Tong. "The Heat Equation Approach to Hermitian-Einstein Metrics on Stable Bundles". W Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 11–84. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_1.
Pełny tekst źródłaSiu, Yum-Tong. "Kähler-Einstein Metrics for the Case of Negative and Zero Anticanonical Class". W Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 85–115. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_2.
Pełny tekst źródłaSiu, Yum-Tong. "Uniqueness of Kähler-Einstein Metrics up to Biholomorphisms". W Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 116–46. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Hermitian metric"
MANEV, MANCHO. "TANGENT BUNDLES WITH SASAKI METRIC AND ALMOST HYPERCOMPLEX PSEUDO-HERMITIAN STRUCTURE". W Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0013.
Pełny tekst źródłaRaporty organizacyjne na temat "Hermitian metric"
Manev, Hristo. Almost Hypercomplex Manifolds with Hermitian‒Norden Metrics and 4‑dimensional Indecomposable Real Lie Algebras Depending on Two Parameters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, maj 2020. http://dx.doi.org/10.7546/crabs.2020.05.01.
Pełny tekst źródła